Get tips on using FITC Mouse Anti-Human CD36 to perform Flow cytometry Anti-bodies Human - CD36/CB38
Get tips on using Purified Mouse Anti-Human CD36 to perform Flow cytometry Anti-bodies Human - CD36/CB38
Get tips on using FITC Rat Anti-Human CD49f to perform Flow cytometry Anti-bodies Human - CD49f/ITGA6
Get tips on using BUV395 Mouse Anti-Human CD123 to perform Flow cytometry Anti-bodies Human - CD123/IL3-R
Get tips on using PE Mouse Anti-Human CD31 to perform Flow cytometry Anti-bodies Human - CD31/PECAM-1
Get tips on using Human IL-6R alpha Antibody to perform Flow cytometry Anti-bodies Human - CD126/IL-6Ralpha
Get tips on using Anti-Human CD282 (TLR2) FITC to perform Flowcytometry TLR2 (CD282) - Mouse / IgG1, kappa Human FITC
Get tips on using Anti-Human CD3 PE-Cyanine7 to perform Flowcytometry CD3 - Mouse / IgG1, kappa Human PE-Cyanine7
The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.
Get tips on using MammoCult™ Human Medium Kit to perform 3D Cell Culture Media Primary human breast tumors-Mammospheres
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment