shRNA gene silencing Rat

- Found 3933 results

Get tips on using pMIR-REPORT™ miRNA Expression Reporter Vector System to perform Reporter gene assay luciferase - HEK 293 human embryonic kidney cells

Products Thermo Fisher Scientific pMIR-REPORT™ miRNA Expression Reporter Vector System

Get tips on using β-Galactosidase Enzyme Assay System with Reporter Lysis Buffer to perform Reporter gene assay β-galactosidase substrates - SK-Hep-1

Products Promega β-Galactosidase Enzyme Assay System with Reporter Lysis Buffer

Protein isolation is a technique that involves isolation and/ or purification of protein from cells or tissues via chromatography or electrophoresis. The major challenges in protein isolation include: 1. The concentration of proteins in cells is variable and tends to be small for some intracellular proteins. Unlike nucleic acids, proteins cannot be amplified. 2. Proteins are more unstable than nucleic acids. They are easily denatured under suboptimal temperature, pH or salt concentrations. 3. Finally, no generalized technique/protocol can be applied for protein isolation. Proteins may have different electrostatic (number of positively or negatively charged amino acids) or hydrophobic properties. Therefore, protein purification requires multiple steps depending on their charge (a negatively charged resin/column for positively charged proteins and vice-versa), dissolution (using detergents) and unlike in the case of DNA and RNA, instead of using salts, proteins should be isolated by isoelectric precipitation.

Proteins Protein isolation Mammalian cells Rat_Circumvallate papillae

Protein isolation is a technique that involves isolation and/ or purification of protein from cells or tissues via chromatography or electrophoresis. The major challenges in protein isolation include: 1. The concentration of proteins in cells is variable and tends to be small for some intracellular proteins. Unlike nucleic acids, proteins cannot be amplified. 2. Proteins are more unstable than nucleic acids. They are easily denatured under suboptimal temperature, pH or salt concentrations. 3. Finally, no generalized technique/protocol can be applied for protein isolation. Proteins may have different electrostatic (number of positively or negatively charged amino acids) or hydrophobic properties. Therefore, protein purification requires multiple steps depending on their charge (a negatively charged resin/column for positively charged proteins and vice-versa), dissolution (using detergents) and unlike in the case of DNA and RNA, instead of using salts, proteins should be isolated by isoelectric precipitation.

Proteins Protein isolation Mammalian cells Rat_Mesenteric fat

Protein isolation is a technique that involves isolation and/ or purification of protein from cells or tissues via chromatography or electrophoresis. The major challenges in protein isolation include: 1. The concentration of proteins in cells is variable and tends to be small for some intracellular proteins. Unlike nucleic acids, proteins cannot be amplified. 2. Proteins are more unstable than nucleic acids. They are easily denatured under suboptimal temperature, pH or salt concentrations. 3. Finally, no generalized technique/protocol can be applied for protein isolation. Proteins may have different electrostatic (number of positively or negatively charged amino acids) or hydrophobic properties. Therefore, protein purification requires multiple steps depending on their charge (a negatively charged resin/column for positively charged proteins and vice-versa), dissolution (using detergents) and unlike in the case of DNA and RNA, instead of using salts, proteins should be isolated by isoelectric precipitation.

Proteins Protein isolation Mammalian cells Rat_Liver

Protein isolation is a technique that involves isolation and/ or purification of protein from cells or tissues via chromatography or electrophoresis. The major challenges in protein isolation include: 1. The concentration of proteins in cells is variable and tends to be small for some intracellular proteins. Unlike nucleic acids, proteins cannot be amplified. 2. Proteins are more unstable than nucleic acids. They are easily denatured under suboptimal temperature, pH or salt concentrations. 3. Finally, no generalized technique/protocol can be applied for protein isolation. Proteins may have different electrostatic (number of positively or negatively charged amino acids) or hydrophobic properties. Therefore, protein purification requires multiple steps depending on their charge (a negatively charged resin/column for positively charged proteins and vice-versa), dissolution (using detergents) and unlike in the case of DNA and RNA, instead of using salts, proteins should be isolated by isoelectric precipitation.

Proteins Protein isolation Mammalian cells Rat_Renal tissue

Get tips on using QuikChange II XL Site-Directed Mutagenesis Kit, 10 Rxn to perform Site Directed Mutagenesis (SDM) Human - Deletion K562 c-Myb gene

Products Agilent Technologies QuikChange II XL Site-Directed Mutagenesis Kit, 10 Rxn

Get tips on using EMD Millipore™ Chemicon™ CpGenome™ Universal DNA Modification Kit to perform DNA methylation profiling Gene specific profiling - HepG2 FHIT

Products Fisher Scientific EMD Millipore™ Chemicon™ CpGenome™ Universal DNA Modification Kit

Get tips on using EMD Millipore™ Chemicon™ CpGenome™ Universal DNA Modification Kit to perform DNA methylation profiling Gene specific profiling - Hep3B SFRP3

Products Fisher Scientific EMD Millipore™ Chemicon™ CpGenome™ Universal DNA Modification Kit

Get tips on using EpiTect Bisulfite Kit to perform DNA methylation profiling Gene specific profiling - TCP-1, BCPAP & nthy-ori 3-1 (thyroid tumor cells) METTL7A

Products Qiagen EpiTect Bisulfite Kit

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms