Protein expression and purification Mammalian cells HeLa

- Found 9527 results

Get tips on using Dynabeads™ mRNA Purification Kit to perform RNA isolation / purification Tissue - Rat Adrenal glands

Products Thermo Fisher Scientific Dynabeads™ mRNA Purification Kit

Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) have been greatly used for studies on embryonic development and cell differentiation.iPSCs provide a stable source for either self-renewal or differentiation into suitable cells when cultured in a particular environment. Pluripotent cell culture was originally started by deriving cells from inner cell mass (ICM) from pre-implanted blastocysts, these were called embryonic stem cells. These cells after isolation can be grown on traditional extracellular matrices (like mouse embryonic fibroblasts, MEFs) or feeder-free culture systems. DMEM/F12 has been the most commonly used basal media in the culture of pluripotent cells. These cells are cultured at normal atmospheric oxygen levels, 21%, however, some studies have proposed that 4% oxygen tension may be better for hESC growth. Higher D-glucose concentration (4.2g/l) and osmolarity (320mOsm) that mimics the natural environment of embryonic tissue are optimal for the growth of hESCs. Supplements like N2 and/or B-27, in the presence of growth factors like bFGF, have been shown to increase pluripotency of these cells. bFGF, FGF2 and other ligands of receptor tyrosine kinases like IGF are also required or maintain self-renewal ability of these cells. TGF𝛃1, by its activation of SMAD2/3 signalling, also represses differentiation of iPSCs. Other compounds like ROCK inhibitors reduce blebbing and apoptosis in these cells to maintain their clonogenicity. However, an inhibitor for LIF (leukaemia inhibitory factor, which is one of the pluripotent genes) has an opposing effect. Therefore, it is important to understand the culture conditions and media composition that affect downstream signalling in hESCs or iPSCs that may lead to their differentiation.

Cell culture media Stem cell culture media h-medial pallium induction and culture

Get tips on using Nucleic Acid Purification to perform Plasmid Isolation Lactococcus lactis

Products Tiangen Nucleic Acid Purification

Get tips on using Nucleic Acid Purification to perform Plasmid Isolation DH10Bac (Bacmid)

Products Tiangen Nucleic Acid Purification

Get tips on using Monoclonal Mouse Anti-Human p53 Protein (Dako Omnis) Clone DO-7 to perform Immunohistochemistry Human - p53

Products Agilent Technologies Monoclonal Mouse Anti-Human p53 Protein (Dako Omnis) Clone DO-7

Get tips on using Click-iT™ EdU Pacific Blue™ Flow Cytometry Assay Kit to perform Cell cycle assay human - HeLa

Products Thermo Fisher Scientific Click-iT™ EdU Pacific Blue™ Flow Cytometry Assay Kit

Get tips on using APO-BrdU™ TUNEL Assay Kit, with Alexa Fluor™ 488 Anti-BrdU to perform DNA Damage Assay HeLa

Products Thermo Fisher Scientific APO-BrdU™ TUNEL Assay Kit, with Alexa Fluor™ 488 Anti-BrdU

Stem cells have the unique ability to self-renew or differentiate themselves into various cell types in response to appropriate signals. These cells are especially important for tissue repair, regeneration, replacement, or in the case of hematopoietic stem cells (HSCs) to differentiate into various myeloid populations. Appropriate signals refer to the growth factor supplements or cytokines that mediate differentiation of various stem cells into the required differentiated form. For instance, HSCs can be differentiated into dendritic cells (with IL-4 and GM-CSF), macrophages (with m-CSF) and MDSCs (with IL-6 and GM-CSF). Human pluripotent stem cells (hPSCs) and induced pluripotent stem cells (iPSCs) can be first cultured in neural differentiation media (GSK3𝛃-i, TGF𝛃-i, AMPK-i, hLIF) to form neural rosettes, which can be differentiated into neural or glial progenitors (finally differentiated into oligodendrocytes). Neural progenitors can be finally differentiated into glutaminergic (dibytyryl cAMP, ascorbic acid) and dopaminergic (SHH, FGF-8, BDNF, GDNF, TGF-𝛃3) neurons. Thus, it is important to first identify the self-renewing cell line: its source and its final differentiation state, followed by the supplements and cytokines required for the differentiation, and final use. Timelines are another thing that is considered. For instance, it takes 7-10 days to form neural rosettes from iPSCs and 3 days to differentiate neural progenitors to neurons. Finally, the stability for stem cell culture media varies. It is advised to make fresh media every time when differentiating HSCs to myeloid populations, whereas neural differentiation media may remain stable for two weeks when stored in dark between 2-8C.

Cell culture media Stem cell Differentiation media Human Limbal Epithelial cells

Get tips on using PolyFect Transfection Reagent to perform DNA transfection Mammalian cells - Immortalized cell lines Chang Liver cells

Products Qiagen PolyFect Transfection Reagent

Get tips on using ToxCount™ Cell Viability Assay to perform Live / Dead assay mammalian cells - glioblastoma stem cells

Products Active Motif ToxCount™ Cell Viability Assay

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms