FACS CD14 Mouse Human

- Found 5376 results

Get tips on using Mouse Osteopontin/OPN Antibody to perform Immunohistochemistry Mouse - Spp1/OPN

Products R&D system, Minneapolis, MN, USA Mouse Osteopontin/OPN Antibody

Get tips on using VENTANA anti-MSH2 (G219-1129) Mouse Monoclonal Primary Antibody to perform Immunohistochemistry Human - MSH2

Products Roche Lifesciences VENTANA anti-MSH2 (G219-1129) Mouse Monoclonal Primary Antibody

Get tips on using Fibroblast Growth Factor 21 Mouse/Rat ELISA to perform ELISA Rat - FGF-21

Products BioVendor Fibroblast Growth Factor 21 Mouse/Rat ELISA

Get tips on using Mouse ICAM-1 / CD54 PicoKine™ ELISA Kit to perform ELISA Mouse - ICAM-1/CD54

Products BosterBio Mouse ICAM-1 / CD54 PicoKine™ ELISA Kit

Get tips on using Alexa Fluor® 647 Rat anti-Mouse CD34 to perform Flow cytometry Anti-bodies Mouse - CD34

Products BD Biosciences Alexa Fluor® 647 Rat anti-Mouse CD34

A standard angiogenic assay involves the autonomous endothelial cell response of self-organization into microvessels, also known as tubes when seeded on a basement membrane matrix in the presence of the appropriate growth factors. However, the component of basement membrane matrix may also affect the tube formation by endothelial cells. Hence it is important to use a standard angiogenesis assay kit or use the same membrane matrix with known composition to standardize the assay conditions.

Cellular assays Angiogenesis assay mouse MS1

Get tips on using Active BDNF (Human, Rat) ELISA Kit to perform ELISA Mouse - GDNF

Products Aviscera Bioscience Active BDNF (Human, Rat) ELISA Kit

Get tips on using Mouse VEGF PicoKine™ Fast ELISA Kit to perform ELISA Mouse - VEGF

Products BosterBio Mouse VEGF PicoKine™ Fast ELISA Kit

Get tips on using siGENOME Mouse Alox12 siRNA to perform siRNA / miRNA gene silencing Mouse - B16-F10 12-Lox/ALOX12

Products Horizon Discovery Ltd. siGENOME Mouse Alox12 siRNA

Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) have been greatly used for studies on embryonic development and cell differentiation.iPSCs provide a stable source for either self-renewal or differentiation into suitable cells when cultured in a particular environment. Pluripotent cell culture was originally started by deriving cells from inner cell mass (ICM) from pre-implanted blastocysts, these were called embryonic stem cells. These cells after isolation can be grown on traditional extracellular matrices (like mouse embryonic fibroblasts, MEFs) or feeder-free culture systems. DMEM/F12 has been the most commonly used basal media in the culture of pluripotent cells. These cells are cultured at normal atmospheric oxygen levels, 21%, however, some studies have proposed that 4% oxygen tension may be better for hESC growth. Higher D-glucose concentration (4.2g/l) and osmolarity (320mOsm) that mimics the natural environment of embryonic tissue are optimal for the growth of hESCs. Supplements like N2 and/or B-27, in the presence of growth factors like bFGF, have been shown to increase pluripotency of these cells. bFGF, FGF2 and other ligands of receptor tyrosine kinases like IGF are also required or maintain self-renewal ability of these cells. TGF𝛃1, by its activation of SMAD2/3 signalling, also represses differentiation of iPSCs. Other compounds like ROCK inhibitors reduce blebbing and apoptosis in these cells to maintain their clonogenicity. However, an inhibitor for LIF (leukaemia inhibitory factor, which is one of the pluripotent genes) has an opposing effect. Therefore, it is important to understand the culture conditions and media composition that affect downstream signalling in hESCs or iPSCs that may lead to their differentiation.

Cell culture media Stem cell culture media Mouse fibroblasts from meninges

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms