Select Host


Cell cytotoxicity / Proliferation assay

- Found 6808 results

Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) have been greatly used for studies on embryonic development and cell differentiation.iPSCs provide a stable source for either self-renewal or differentiation into suitable cells when cultured in a particular environment. Pluripotent cell culture was originally started by deriving cells from inner cell mass (ICM) from pre-implanted blastocysts, these were called embryonic stem cells. These cells after isolation can be grown on traditional extracellular matrices (like mouse embryonic fibroblasts, MEFs) or feeder-free culture systems. DMEM/F12 has been the most commonly used basal media in the culture of pluripotent cells. These cells are cultured at normal atmospheric oxygen levels, 21%, however, some studies have proposed that 4% oxygen tension may be better for hESC growth. Higher D-glucose concentration (4.2g/l) and osmolarity (320mOsm) that mimics the natural environment of embryonic tissue are optimal for the growth of hESCs. Supplements like N2 and/or B-27, in the presence of growth factors like bFGF, have been shown to increase pluripotency of these cells. bFGF, FGF2 and other ligands of receptor tyrosine kinases like IGF are also required or maintain self-renewal ability of these cells. TGF𝛃1, by its activation of SMAD2/3 signalling, also represses differentiation of iPSCs. Other compounds like ROCK inhibitors reduce blebbing and apoptosis in these cells to maintain their clonogenicity. However, an inhibitor for LIF (leukaemia inhibitory factor, which is one of the pluripotent genes) has an opposing effect. Therefore, it is important to understand the culture conditions and media composition that affect downstream signalling in hESCs or iPSCs that may lead to their differentiation.

Cell culture media Stem cell culture media Human Tendon Stem/Pluripotence cells (TSPCs)

Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) have been greatly used for studies on embryonic development and cell differentiation.iPSCs provide a stable source for either self-renewal or differentiation into suitable cells when cultured in a particular environment. Pluripotent cell culture was originally started by deriving cells from inner cell mass (ICM) from pre-implanted blastocysts, these were called embryonic stem cells. These cells after isolation can be grown on traditional extracellular matrices (like mouse embryonic fibroblasts, MEFs) or feeder-free culture systems. DMEM/F12 has been the most commonly used basal media in the culture of pluripotent cells. These cells are cultured at normal atmospheric oxygen levels, 21%, however, some studies have proposed that 4% oxygen tension may be better for hESC growth. Higher D-glucose concentration (4.2g/l) and osmolarity (320mOsm) that mimics the natural environment of embryonic tissue are optimal for the growth of hESCs. Supplements like N2 and/or B-27, in the presence of growth factors like bFGF, have been shown to increase pluripotency of these cells. bFGF, FGF2 and other ligands of receptor tyrosine kinases like IGF are also required or maintain self-renewal ability of these cells. TGF𝛃1, by its activation of SMAD2/3 signalling, also represses differentiation of iPSCs. Other compounds like ROCK inhibitors reduce blebbing and apoptosis in these cells to maintain their clonogenicity. However, an inhibitor for LIF (leukaemia inhibitory factor, which is one of the pluripotent genes) has an opposing effect. Therefore, it is important to understand the culture conditions and media composition that affect downstream signalling in hESCs or iPSCs that may lead to their differentiation.

Cell culture media Stem cell culture media Human Dental pulp stem cells (hDPSC)

Get tips on using CelLytic™ B Cell Lysis Reagent to perform Protein isolation Bacteria - Fremyella diplosiphon

Products Sigma-Aldrich CelLytic™ B Cell Lysis Reagent

Get tips on using CelLytic™ B Cell Lysis Reagent to perform Protein isolation Bacteria - Synechococcus elongatus

Products Sigma-Aldrich CelLytic™ B Cell Lysis Reagent

Get tips on using CelLytic™ B Cell Lysis Reagent to perform Protein isolation Bacteria - Salmonella enterica

Products Sigma-Aldrich CelLytic™ B Cell Lysis Reagent

Get tips on using CelLytic™ B Cell Lysis Reagent to perform Protein isolation Bacteria - Pseudomonas aeruginosa

Products Sigma-Aldrich CelLytic™ B Cell Lysis Reagent

Get tips on using CelLytic™ B Cell Lysis Reagent to perform Protein isolation Bacteria - Vibrio cholerae

Products Sigma-Aldrich CelLytic™ B Cell Lysis Reagent

Get tips on using CelLytic™ B Cell Lysis Reagent to perform Protein isolation Bacteria - Escherichia coli

Products Sigma-Aldrich CelLytic™ B Cell Lysis Reagent

Get tips on using CelLytic™ MT Cell Lysis Reagent to perform Protein isolation Tissue - Mouse heart

Products Sigma-Aldrich CelLytic™ MT Cell Lysis Reagent

Get tips on using CelLytic™ MT Cell Lysis Reagent to perform Protein isolation Tissue - Mouse aorta

Products Sigma-Aldrich CelLytic™ MT Cell Lysis Reagent

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms