rna isolation s.aureus

- Found 5630 results

Microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray RNA amplification & Labeling Mouse skin tissue Biotin

Get tips on using Enzo BioArray™ Single-Round RNA Amplification and Biotin Labeling System to perform Microarray RNA amplification & Labeling - Rhesus monkey brain tissue Biotin

Products Enzo Life Sciences Enzo BioArray™ Single-Round RNA Amplification and Biotin Labeling System

Get tips on using Enzo BioArray™ Single-Round RNA Amplification and Biotin Labeling System to perform Microarray Rhesus monkey - Brain tissue Target preparation (RNA amplification + labeling)

Products Enzo Life Sciences Enzo BioArray™ Single-Round RNA Amplification and Biotin Labeling System

Get tips on using NEBNext® Ultra™ Directional RNA Library Prep Kit for Illumina® to perform RNA sequencing Mouse - Microglia

Products New England BioLabs NEBNext® Ultra™ Directional RNA Library Prep Kit for Illumina®

Get tips on using NEBNext® Ultra™ Directional RNA Library Prep Kit for Illumina® to perform RNA sequencing Mouse - Neuro 2a

Products New England BioLabs NEBNext® Ultra™ Directional RNA Library Prep Kit for Illumina®

Get tips on using NEBNext® Ultra™ Directional RNA Library Prep Kit for Illumina® to perform RNA sequencing Mouse - BV-2

Products New England BioLabs NEBNext® Ultra™ Directional RNA Library Prep Kit for Illumina®

The formation of DNA from an RNA template using reverse transcription leads to the formation of double-stranded complementary DNA or cDNA. The challenges with this process include 1. Maintaining the integrity of RNA, 2. Hairpin loops or other secondary structures formed by single-stranded RNA can also affect cDNA synthesis, and 3. DNA-RNA hybrids, which may result when the first strand of cDNA is formed. For the first challenge, using workflows that involve proper isolation and storage of RNA, and maintaining a nuclease-free environment helps obtain RNA with ideal 260/230 ratios. Using a reverse transcriptase that can tolerate high temperatures (50-55oC), overcomes obstacles imposed by secondary RNA structures. Finally, RNase H has the ability to hydrolyze RNA before the formation of a second cDNA strand. It is important to ensure that RNase H activity is optimal because higher RNase H activity leads to premature degradation of the RNA template. Many reverse transcriptases offer built-in RNase H activity.

RNA cDNA synthesis Tissue

The formation of DNA from an RNA template using reverse transcription leads to the formation of double-stranded complementary DNA or cDNA. The challenges with this process include 1. Maintaining the integrity of RNA, 2. Hairpin loops or other secondary structures formed by single-stranded RNA can also affect cDNA synthesis, and 3. DNA-RNA hybrids, which may result when the first strand of cDNA is formed. For the first challenge, using workflows that involve proper isolation and storage of RNA, and maintaining a nuclease-free environment helps obtain RNA with ideal 260/230 ratios. Using a reverse transcriptase that can tolerate high temperatures (50-55oC), overcomes obstacles imposed by secondary RNA structures. Finally, RNase H has the ability to hydrolyze RNA before the formation of a second cDNA strand. It is important to ensure that RNase H activity is optimal because higher RNase H activity leads to premature degradation of the RNA template. Many reverse transcriptases offer built-in RNase H activity.

RNA cDNA synthesis Yeast

Get tips on using NEBNext® Ultra™ Directional RNA Library Prep Kit for Illumina® to perform RNA sequencing Mouse - ESCs (Embryonic Stem Cells)

Products New England BioLabs NEBNext® Ultra™ Directional RNA Library Prep Kit for Illumina®

Get tips on using "Illumina ™ TotalPrep ™ RNA Amplification Kit + Bio-16-UTP (10 mM) to perform Microarray RNA amplification & Labeling - Mouse cochlaea Biotin

Products Thermo Fisher Scientific "Illumina ™ TotalPrep ™ RNA Amplification Kit + Bio-16-UTP (10 mM)

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms