Get tips on using FuGENE® HD Transfection Reagent to perform DNA transfection Mammalian cells - Primary cells Rat mesangial cells
Get tips on using Lipofectamine™ 3000 Transfection Reagent to perform DNA transfection Mammalian cells - Primary cells Rat schwann cells
Get tips on using SuperFect Transfection Reagent to perform DNA transfection Mammalian cells - Primary cells Human aortic smooth muscle cells (HOSMC)
Get tips on using QIAamp DNA Mini Kit to perform DNA isolation / purification Cells - Primary cells Cyst-derived kidney epithelial cells
Get tips on using FuGENE® 6 Transfection Reagent to perform DNA transfection Mammalian cells - Primary cells Rat hepatic stellate cells
Get tips on using Lipofectamine® 2000 Transfection Reagent to perform DNA transfection Mammalian cells - Primary cells Rat hepatic stellate cells
Get tips on using QIAamp DNA FFPE Tissue Kit to perform DNA isolation / purification Cells - Primary cells Pseudomyxoma peritonei (PMP) cells
DNA-protein interactions are studied by using ChIP. The basic steps in this technique are crosslinking, sonication, immunoprecipitation, and analysis of the immunoprecipitated DNA. During ChIP, if chromatin is under-fragmented or fragments are too large which can lead to the increased background and lower resolution. Shorter cross-linking times (5-10 min) and/or lower formaldehyde concentrations (<1%) may improve shearing efficiency. If Chromatin is over-fragmented, then optimize shearing conditions for each cell type to improve ChIP efficiency. Over-sonication of chromatin may disrupt chromatin integrity and denature antibody epitopes. If you do not see any product or very little product in the input PCR reactions, add 5–10 μg chromatin per IP.
DNA-protein interactions are studied by using ChIP. The basic steps in this technique are crosslinking, sonication, immunoprecipitation, and analysis of the immunoprecipitated DNA. During ChIP, if chromatin is under-fragmented or fragments are too large which can lead to the increased background and lower resolution. Shorter cross-linking times (5-10 min) and/or lower formaldehyde concentrations (<1%) may improve shearing efficiency. If Chromatin is over-fragmented, then optimize shearing conditions for each cell type to improve ChIP efficiency. Over-sonication of chromatin may disrupt chromatin integrity and denature antibody epitopes. If you do not see any product or very little product in the input PCR reactions, add 5–10 μg chromatin per IP.
DNA-protein interactions are studied by using ChIP. The basic steps in this technique are crosslinking, sonication, immunoprecipitation, and analysis of the immunoprecipitated DNA. During ChIP, if chromatin is under-fragmented or fragments are too large which can lead to the increased background and lower resolution. Shorter cross-linking times (5-10 min) and/or lower formaldehyde concentrations (<1%) may improve shearing efficiency. If Chromatin is over-fragmented, then optimize shearing conditions for each cell type to improve ChIP efficiency. Over-sonication of chromatin may disrupt chromatin integrity and denature antibody epitopes. If you do not see any product or very little product in the input PCR reactions, add 5–10 μg chromatin per IP.
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment