dna-quantification-human-pc-3

- Found 6207 results

ROS has a very short half-lives in biological environment as they are influenced by exposure to ambient oxygen. As it is highly reactive and hard to measure care should be taken to ensure the stability of the sample during isolation, preparation, storage, and analysis.

Cellular assays ROS assay cell type K562 human leukemia cells

A gross majority of classical apoptotic attributes can be quantitatively examined by flow cytometry, the preferred platform for rapid assessment of multiple cellular attributes at a single-cell level. However, sample preparation for such flow cytometry-based techniques could be challenging. Cell harvesting by trypsinization, mechanical or enzymatic cell disaggregation from tissues, extensive centrifugation steps, may all lead to preferential loss of apoptotic cells. To overcome this strictly follow manufacturers instruction of the detection kit.

Cellular assays Apoptosis assay cell type Human endometrial stromal cells

Reporter gene assays enable high sensitivity measurement of gene expression and cell signaling through the addition of bioluminescent genes into target cells. One of the major challenges is to make a specific construct that has no responses other than those related to the signaling pathway of interest. This can be achieved by selecting highly specific reporter constructs containing only defined responsive elements and a minimal promoter linked to reporter enzymes such as luciferase

Cellular assays Reporter gene assay luciferase human embryonic stem cells

The RNA interference (RNAi) is used to inhibit gene expression or translation, by neutralizing targeted mRNA molecules. Two types of RNA molecules such as microRNA (miRNA) and small interfering RNA (siRNA) play a central role in RNAi. Few points have to considered to increase the transfection efficiency of siRNA. Always use healthy, actively dividing cells to maximize transfection efficiency. The confluency of cells should be between 50-70%. Always use the most appropriate siRNA concentration to avoid off-target effects and unwanted toxic side effects. Positive and negative controls should be used for each and every experiment to determine transfection efficiency.

RNA siRNA / RNAi /miRNA transfection Human Cells HESC Lipofectamine

The RNA interference (RNAi) is used to inhibit gene expression or translation, by neutralizing targeted mRNA molecules. Two types of RNA molecules such as microRNA (miRNA) and small interfering RNA (siRNA) play a central role in RNAi. Few points have to be considered to increase the transfection efficiency of siRNA. Always use healthy, actively dividing cells to maximize transfection efficiency. The confluency of cells should be between 50-70%. Always use the most appropriate siRNA concentration to avoid off-target effects and unwanted toxic side effects. Positive and negative controls should be used for each and every experiment to determine transfection efficiency.

RNA siRNA / RNAi /miRNA transfection Human Cells HeLa Lipofectamine

Wound healing assay can be challenging due to inconsistencies and variations while making a wound on the confluent cell monolayer, consequently leads to wounds of varying sizes and widths. Moreover, this assay causes damage to the cells that are at the edge of the wound, which can prevent cell migration into the wound site and healing. The best solution is to use the standard wound healing assay kits using either combs or inserts to make a defined wound field or gap and prevent the well-to-well variation in these assays.

Cellular assays Wound healing assay cell type human MDA-MB-231

As autophagy is a multi-step process which includes not just the formation of autophagosomes, but most importantly, flux through the entire system, including the degradation upon fusion with lysosomes, which makes it quite challenging for detection. There are several methods for detection in mammalian cells, including immunoblotting analysis of LC3 and p62 and detection of autophagosome formation/maturation by fluorescence microscopy, Currently, there is no single “gold standard” for determining the autophagic activity that is applicable in every experimental context, hence it is recommended to go for the combined use of multiple methods to accurately assess the autophagic activity in any given biological setting.

Cellular assays Autophagy assay cell type Human osteosarcoma cancer cells

As autophagy is a multi-step process which includes not just the formation of autophagosomes, but most importantly, flux through the entire system, including the degradation upon fusion with lysosomes, which makes it quite challenging for detection. There are several methods for detection in mammalian cells, including immunoblotting analysis of LC3 and p62 and detection of autophagosome formation/maturation by fluorescence microscopy, Currently, there is no single “gold standard” for determining the autophagic activity that is applicable in every experimental context, hence it is recommended to go for the combined use of multiple methods to accurately assess the autophagic activity in any given biological setting.

Cellular assays Autophagy assay cell type Normal human fibroblasts (NHFs)

Cell Invasion or Cell Migration assays are technically challenging to set up as the gradient between the two compartments equilibrates in time during the assay. It is also problematic to view cells and for cells to migrate through a non-physiologic polycarbonate or polypropylene filter. Care must be taken while loading the well with cells to form a single cell suspension. Precaution must be taken while trypsinization (under-trypsinization can lead to cell clumping while over-trypsinization could strip off adhesion molecules necessary for migration). This leads to difficulty in getting significant results, when only small numbers of cells cross the filter or when the distribution and/or staining of the cells is uneven.

Cellular assays Cell migration / Invasion cell type isolated human neutrophils

An alternative to culture-based cell death detection is an assessment of other cell viability indicators using fluorescent dyes, including membrane potential and membrane integrity. Live/Dead assays differentiates live and dead cells using membrane integrity as a proxy for cell viability and are based on a fluorescent staining procedure followed by detection using flow cytometry. However, samples preparation for such flow cytometry-based techniques could be challenging. Cell harvesting by trypsinization, mechanical or enzymatic cell disaggregation from tissues, extensive centrifugation steps, may all lead to preferential loss of apoptotic cells. To overcome this strictly follow manufacturers instruction of the detection kit.

Cellular assays Live / Dead assay mammalian cells human peripheral blood mononuclear cells

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms