rna-isolation-purification-cells-immortalized-saos-2

- Found 9259 results

Get tips on using jetPEI® DNA transfection, HTS application to perform DNA transfection Mammalian cells - Immortalized cell lines PANC-1

Products Polyplus transfections jetPEI® DNA transfection, HTS application

Get tips on using jetPEI® DNA transfection, HTS application to perform DNA transfection Mammalian cells - Immortalized cell lines SMMC-7721

Products Polyplus transfections jetPEI® DNA transfection, HTS application

Get tips on using jetPEI® DNA transfection, HTS application to perform DNA transfection Mammalian cells - Immortalized cell lines OVCAR-3

Products Polyplus transfections jetPEI® DNA transfection, HTS application

Get tips on using jetPEI® DNA transfection, HTS application to perform DNA transfection Mammalian cells - Immortalized cell lines SH-SY5Y

Products Polyplus transfections jetPEI® DNA transfection, HTS application

Get tips on using Pierce™ Cell Surface Protein Isolation Kit to perform Protein isolation Tissue - Human aortic endothelial cells

Products Thermo Fisher Scientific Pierce™ Cell Surface Protein Isolation Kit

Cellular assays Cell Isolation PBMC Isolation

Get tips on using PhosphoProtein Purification Kit (6) to perform Protein tag Purification of phosphorylated proteins

Products Qiagen PhosphoProtein Purification Kit (6)

The RNA interference (RNAi) is used to inhibit gene expression or translation, by neutralizing targeted mRNA molecules. Two types of RNA molecules such as microRNA (miRNA) and small interfering RNA (siRNA) play a central role in RNAi. Few points have to considered to increase the transfection efficiency of siRNA. Always use healthy, actively dividing cells to maximize transfection efficiency. The confluency of cells should be between 50-70%. Always use the most appropriate siRNA concentration to avoid off-target effects and unwanted toxic side effects. Positive and negative controls should be used for each and every experiment to determine transfection efficiency.

RNA siRNA / RNAi /miRNA transfection Human Cells Cal 27 cells Polymer / lipid

Plasmid isolation is an important technique in molecular biology or any kind of genetic editing. It involves amplifying plasmids overnight by transforming them into competent bacterial cells. The desired colonies of these bacteria can then be grown in shaker cultures, at appropriate shaking speed, oxygen availability and temperature. These liquid cultures can then be ultracentrifuged to pellet the bacteria, which are then used for plasmid isolation. The bacteria are first resuspended in a buffer, then lysed, neutralized, purified in a column, eluted, precipitated with ethanol and then resuspended. During plasmid isolation, it is important to lyse cells quickly because lysing bacteria for too long may lead to irreversible denaturing of the plasmid. Usually, alkaline lysis is used for isolation because it is a mild treatment. It isolates plasmid DNA and other cell components such as proteins by breaking cells apart with an alkaline solution. Precipitation removes the proteins, and the plasmid DNA recovers with alcohol precipitation. Resuspension and lysis buffers should be mixed thoroughly in order to prevent the DNA from breaking into smaller fragments. This is because broken gDNA can reanneal and remain in the solution, without binding to the column.

DNA Plasmid Isolation E. coli DH5α

Plasmid isolation is an important technique in molecular biology or any kind of genetic editing. It involves amplifying plasmids overnight by transforming them into competent bacterial cells. The desired colonies of these bacteria can then be grown in shaker cultures, at appropriate shaking speed, oxygen availability and temperature. These liquid cultures can then be ultracentrifuged to pellet the bacteria, which are then used for plasmid isolation. The bacteria are first resuspended in a buffer, then lysed, neutralized, purified in a column, eluted, precipitated with ethanol and then resuspended. During plasmid isolation, it is important to lyse cells quickly because lysing bacteria for too long may lead to irreversible denaturing of the plasmid. Usually, alkaline lysis is used for isolation because it is a mild treatment. It isolates plasmid DNA and other cell components such as proteins by breaking cells apart with an alkaline solution. Precipitation removes the proteins, and the plasmid DNA recovers with alcohol precipitation. Resuspension and lysis buffers should be mixed thoroughly in order to prevent the DNA from breaking into smaller fragments. This is because broken gDNA can reanneal and remain in the solution, without binding to the column.

DNA Plasmid Isolation E. coli INVαF'

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms