rna-isolation-purification-tissue-mouse-hippocampus

- Found 7070 results

RNA-Bee Product

Get tips on using RNA-Bee to perform RNA isolation / purification Tissue - Mouse Colon

Products Amsbio RNA-Bee

Get tips on using AllPrep DNA/RNA/miRNA Universal Kit to perform RNA isolation / purification Tissue - mouse adipose tissue

Products Qiagen AllPrep DNA/RNA/miRNA Universal Kit

Get tips on using mirVana™ miRNA Isolation Kit, with phenol to perform RNA isolation / purification Tissue - mouse lung tissue

Products Thermo Fisher Scientific mirVana™ miRNA Isolation Kit, with phenol

Get tips on using mirVana™ miRNA Isolation Kit, with phenol to perform RNA isolation / purification Tissue - mouse brain tissue

Products Thermo Fisher Scientific mirVana™ miRNA Isolation Kit, with phenol

Get tips on using mirVana™ miRNA Isolation Kit, with phenol to perform RNA isolation / purification Tissue - mouse liver tissue

Products Thermo Fisher Scientific mirVana™ miRNA Isolation Kit, with phenol

Microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray RNA amplification & Labeling Mouse brain tissue Biotin

Microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray RNA amplification & Labeling Mouse mammary tissue Biotin

Microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray RNA amplification & Labeling Mouse skin tissue Biotin

Get tips on using NucleoSpin® RNA to perform RNA isolation / purification Tissue - Mouse Testes

Products Macherey Nagel NucleoSpin® RNA

Get tips on using NucleoSpin® RNA to perform RNA isolation / purification Tissue - Mouse Spleen

Products Macherey Nagel NucleoSpin® RNA

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms