siRNA / miRNA gene silencing Human HNSCC cell line Eph receptor B4

- Found 8975 results

Get tips on using PE Mouse Anti-Human CD90 to perform Flow cytometry Anti-bodies Human - CD90

Products BD Biosciences PE Mouse Anti-Human CD90

Get tips on using APC anti-human CD24 Antibody to perform Flow cytometry Anti-bodies Human - CD24

Products BioLegend APC anti-human CD24 Antibody

Get tips on using BV605 Mouse Anti-Human CD15 to perform Flow cytometry Anti-bodies Human - CD15

Products BD Biosciences BV605 Mouse Anti-Human CD15

Get tips on using PE Mouse Anti-Human CD44 to perform Flow cytometry Anti-bodies Human - CD44

Products BD Biosciences PE Mouse Anti-Human CD44

Get tips on using CRP (Human) ELISA Kit (KA0238) to perform ELISA Human - C-Reactive Protein/CRP

Products Abnova CRP (Human) ELISA Kit (KA0238)

Get tips on using GeneJuice® Transfection Reagent to perform DNA transfection Mammalian cells - Immortalized cell lines 3T3-L1

Products Millipore GeneJuice® Transfection Reagent

Stem cells have the unique ability to self-renew or differentiate themselves into various cell types in response to appropriate signals. These cells are especially important for tissue repair, regeneration, replacement, or in the case of hematopoietic stem cells (HSCs) to differentiate into various myeloid populations. Appropriate signals refer to the growth factor supplements or cytokines that mediate differentiation of various stem cells into the required differentiated form. For instance, HSCs can be differentiated into dendritic cells (with IL-4 and GM-CSF), macrophages (with m-CSF) and MDSCs (with IL-6 and GM-CSF). Human pluripotent stem cells (hPSCs) and induced pluripotent stem cells (iPSCs) can be first cultured in neural differentiation media (GSK3𝛃-i, TGF𝛃-i, AMPK-i, hLIF) to form neural rosettes, which can be differentiated into neural or glial progenitors (finally differentiated into oligodendrocytes). Neural progenitors can be finally differentiated into glutaminergic (dibytyryl cAMP, ascorbic acid) and dopaminergic (SHH, FGF-8, BDNF, GDNF, TGF-𝛃3) neurons. Thus, it is important to first identify the self-renewing cell line: its source and its final differentiation state, followed by the supplements and cytokines required for the differentiation, and final use. Timelines are another thing that is considered. For instance, it takes 7-10 days to form neural rosettes from iPSCs and 3 days to differentiate neural progenitors to neurons. Finally, the stability for stem cell culture media varies. It is advised to make fresh media every time when differentiating HSCs to myeloid populations, whereas neural differentiation media may remain stable for two weeks when stored in dark between 2-8C.

Cell culture media Stem cell Differentiation media iPSCs or hESCs differentiation into cerebellar neuroepithelium (NE)

Stem cells have the unique ability to self-renew or differentiate themselves into various cell types in response to appropriate signals. These cells are especially important for tissue repair, regeneration, replacement, or in the case of hematopoietic stem cells (HSCs) to differentiate into various myeloid populations. Appropriate signals refer to the growth factor supplements or cytokines that mediate differentiation of various stem cells into the required differentiated form. For instance, HSCs can be differentiated into dendritic cells (with IL-4 and GM-CSF), macrophages (with m-CSF) and MDSCs (with IL-6 and GM-CSF). Human pluripotent stem cells (hPSCs) and induced pluripotent stem cells (iPSCs) can be first cultured in neural differentiation media (GSK3𝛃-i, TGF𝛃-i, AMPK-i, hLIF) to form neural rosettes, which can be differentiated into neural or glial progenitors (finally differentiated into oligodendrocytes). Neural progenitors can be finally differentiated into glutaminergic (dibytyryl cAMP, ascorbic acid) and dopaminergic (SHH, FGF-8, BDNF, GDNF, TGF-𝛃3) neurons. Thus, it is important to first identify the self-renewing cell line: its source and its final differentiation state, followed by the supplements and cytokines required for the differentiation, and final use. Timelines are another thing that is considered. For instance, it takes 7-10 days to form neural rosettes from iPSCs and 3 days to differentiate neural progenitors to neurons. Finally, the stability for stem cell culture media varies. It is advised to make fresh media every time when differentiating HSCs to myeloid populations, whereas neural differentiation media may remain stable for two weeks when stored in dark between 2-8C.

Cell culture media Stem cell Differentiation media hiPSCs or hESCs differentiation to Embryoid body (EB)

Get tips on using PE Mouse Anti-Human CD140a to perform Flow cytometry Anti-bodies Human - CD140/PDFGR2

Products BD Biosciences PE Mouse Anti-Human CD140a

Get tips on using PE Mouse Anti-Human CD184 to perform Flow cytometry Anti-bodies Human - CD184/CXCR4

Products BD Biosciences PE Mouse Anti-Human CD184

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms