siRNA / miRNA gene silencing Rat MTLn3 (rat mammary adenocarcinoma breast cancer cell line)

- Found 8613 results

Get tips on using X-tremeGENE™ HP DNA Transfection Reagent to perform DNA transfection Mammalian cells - Immortalized cell lines Neuro2a

Products Sigma-Aldrich X-tremeGENE™ HP DNA Transfection Reagent

Get tips on using X-tremeGENE™ HP DNA Transfection Reagent to perform DNA transfection Mammalian cells - Immortalized cell lines L02

Products Sigma-Aldrich X-tremeGENE™ HP DNA Transfection Reagent

Get tips on using X-tremeGENE™ HP DNA Transfection Reagent to perform DNA transfection Mammalian cells - Immortalized cell lines H9C2

Products Sigma-Aldrich X-tremeGENE™ HP DNA Transfection Reagent

Get tips on using X-tremeGENE™ HP DNA Transfection Reagent to perform DNA transfection Mammalian cells - Immortalized cell lines Huh7

Products Sigma-Aldrich X-tremeGENE™ HP DNA Transfection Reagent

Get tips on using X-tremeGENE™ HP DNA Transfection Reagent to perform DNA transfection Mammalian cells - Immortalized cell lines HepG2

Products Sigma-Aldrich X-tremeGENE™ HP DNA Transfection Reagent

Get tips on using jetPEI® DNA transfection, HTS application to perform DNA transfection Mammalian cells - Immortalized cell lines MDA-MB-231

Products Polyplus transfections jetPEI® DNA transfection, HTS application

Get tips on using X-tremeGENE™ HP DNA Transfection Reagent to perform DNA transfection Mammalian cells - Immortalized cell lines PANC-1

Products Sigma-Aldrich X-tremeGENE™ HP DNA Transfection Reagent

Get tips on using X-tremeGENE™ HP DNA Transfection Reagent to perform DNA transfection Mammalian cells - Immortalized cell lines MDA-MB-231

Products Sigma-Aldrich X-tremeGENE™ HP DNA Transfection Reagent

Stem cells have the unique ability to self-renew or differentiate themselves into various cell types in response to appropriate signals. These cells are especially important for tissue repair, regeneration, replacement, or in the case of hematopoietic stem cells (HSCs) to differentiate into various myeloid populations. Appropriate signals refer to the growth factor supplements or cytokines that mediate differentiation of various stem cells into the required differentiated form. For instance, HSCs can be differentiated into dendritic cells (with IL-4 and GM-CSF), macrophages (with m-CSF) and MDSCs (with IL-6 and GM-CSF). Human pluripotent stem cells (hPSCs) and induced pluripotent stem cells (iPSCs) can be first cultured in neural differentiation media (GSK3𝛃-i, TGF𝛃-i, AMPK-i, hLIF) to form neural rosettes, which can be differentiated into neural or glial progenitors (finally differentiated into oligodendrocytes). Neural progenitors can be finally differentiated into glutaminergic (dibytyryl cAMP, ascorbic acid) and dopaminergic (SHH, FGF-8, BDNF, GDNF, TGF-𝛃3) neurons. Thus, it is important to first identify the self-renewing cell line: its source and its final differentiation state, followed by the supplements and cytokines required for the differentiation, and final use. Timelines are another thing that is considered. For instance, it takes 7-10 days to form neural rosettes from iPSCs and 3 days to differentiate neural progenitors to neurons. Finally, the stability for stem cell culture media varies. It is advised to make fresh media every time when differentiating HSCs to myeloid populations, whereas neural differentiation media may remain stable for two weeks when stored in dark between 2-8C.

Cell culture media Stem cell Differentiation media Human Limbal Epithelial cells

Stem cells have the unique ability to self-renew or differentiate themselves into various cell types in response to appropriate signals. These cells are especially important for tissue repair, regeneration, replacement, or in the case of hematopoietic stem cells (HSCs) to differentiate into various myeloid populations. Appropriate signals refer to the growth factor supplements or cytokines that mediate differentiation of various stem cells into the required differentiated form. For instance, HSCs can be differentiated into dendritic cells (with IL-4 and GM-CSF), macrophages (with m-CSF) and MDSCs (with IL-6 and GM-CSF). Human pluripotent stem cells (hPSCs) and induced pluripotent stem cells (iPSCs) can be first cultured in neural differentiation media (GSK3𝛃-i, TGF𝛃-i, AMPK-i, hLIF) to form neural rosettes, which can be differentiated into neural or glial progenitors (finally differentiated into oligodendrocytes). Neural progenitors can be finally differentiated into glutaminergic (dibytyryl cAMP, ascorbic acid) and dopaminergic (SHH, FGF-8, BDNF, GDNF, TGF-𝛃3) neurons. Thus, it is important to first identify the self-renewing cell line: its source and its final differentiation state, followed by the supplements and cytokines required for the differentiation, and final use. Timelines are another thing that is considered. For instance, it takes 7-10 days to form neural rosettes from iPSCs and 3 days to differentiate neural progenitors to neurons. Finally, the stability for stem cell culture media varies. It is advised to make fresh media every time when differentiating HSCs to myeloid populations, whereas neural differentiation media may remain stable for two weeks when stored in dark between 2-8C.

Cell culture media Stem cell Differentiation media hESCs differentiation into SFEBq

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms