Protein Expression Prokaryotic cells M. smegmatis

- Found 10050 results

Get tips on using REALTOTAL RNA Spin Plus to perform RNA isolation / purification Cells - primary human aortic smooth muscle cells

Products Real Laboratory REALTOTAL RNA Spin Plus

Get tips on using FuGENE® 6 Transfection Reagent to perform DNA transfection Mammalian cells - Primary cells Rat articular chondrocytes

Products Promega FuGENE® 6 Transfection Reagent

Get tips on using Lipofectamine® 2000 Transfection Reagent to perform DNA transfection Mammalian cells - Primary cells Rat articular chondrocytes

Products Thermo Fisher Scientific Lipofectamine® 2000 Transfection Reagent

Get tips on using Lipofectamine® RNAiMAX Transfection Reagent to perform siRNA / RNAi /miRNA transfection Human Cells - Jurkat cells Lipofectamine

Products Thermo Fisher Scientific Lipofectamine® RNAiMAX Transfection Reagent

Get tips on using jetPEI® DNA transfection, HTS application to perform DNA transfection Mammalian cells - Primary cells Human astrocytes

Products Polyplus transfections jetPEI® DNA transfection, HTS application

Get tips on using Gentra Puregene Cell Kit to perform DNA isolation / purification Cells - Primary cells Human primary keratinocytes

Products Qiagen Gentra Puregene Cell Kit

A restriction enzyme or restriction endonuclease is defined as a protein that recognizes a specific, short nucleotide sequence and cuts the DNA only at or near that site, known as restriction site or target sequence. The four most common types of restriction enzymes include: Type I (cleaves at sites remote from a recognition site), Type II (cleaves within or at short specific distances from a recognition site), Type III (cleave at sites a short distance from a recognition site), and Type IV (targets modified DNA- methylated, hydroxymethylated and glucosyl-hydroxymethylated DNA). The most common challenges with restriction digest include- 1. inactivation of the enzyme, 2. incomplete or no digestion, and 3. unexpected cleavage. The enzyme should always be stored at -20C and multiple freeze-thaw cycles should be avoided in order to maintain optimal activity. Always use a control DNA digestion with the enzyme to ensure adequate activity (to avoid interference due to high glycerol in the enzyme). For complete digestion, make sure that the enzyme volume is 1/10th of the total reaction volume, the optimal temperature is constantly maintained throughout the reaction, the total reaction time is appropriately calculated based on the amount of DNA to be digested, appropriate buffers should be used to ensure maximal enzymatic activity, and in case of a double digest, make sure that the two restriction sites are far enough so that the activity of one enzyme cannot interfere with the activity of the other. Star activity (or off-target cleavage) and incomplete cleavage are potential challenges which may occur due to suboptimal enzymatic conditions or inappropriate enzyme storage. To avoid these, follow the recommended guidelines for storage and reactions, and always check for the efficacy of digestion along with purification of digested products on an agarose gel.

Proteins Restriction Enzymes MfeI / MunI

A restriction enzyme or restriction endonuclease is defined as a protein that recognizes a specific, short nucleotide sequence and cuts the DNA only at or near that site, known as restriction site or target sequence. The four most common types of restriction enzymes include: Type I (cleaves at sites remote from a recognition site), Type II (cleaves within or at short specific distances from a recognition site), Type III (cleave at sites a short distance from a recognition site), and Type IV (targets modified DNA- methylated, hydroxymethylated and glucosyl-hydroxymethylated DNA). The most common challenges with restriction digest include- 1. inactivation of the enzyme, 2. incomplete or no digestion, and 3. unexpected cleavage. The enzyme should always be stored at -20C and multiple freeze-thaw cycles should be avoided in order to maintain optimal activity. Always use a control DNA digestion with the enzyme to ensure adequate activity (to avoid interference due to high glycerol in the enzyme). For complete digestion, make sure that the enzyme volume is 1/10th of the total reaction volume, the optimal temperature is constantly maintained throughout the reaction, the total reaction time is appropriately calculated based on the amount of DNA to be digested, appropriate buffers should be used to ensure maximal enzymatic activity, and in case of a double digest, make sure that the two restriction sites are far enough so that the activity of one enzyme cannot interfere with the activity of the other. Star activity (or off-target cleavage) and incomplete cleavage are potential challenges which may occur due to suboptimal enzymatic conditions or inappropriate enzyme storage. To avoid these, follow the recommended guidelines for storage and reactions, and always check for the efficacy of digestion along with purification of digested products on an agarose gel.

Proteins Restriction Enzymes MlsI / MscI

Get tips on using Live and Dead Cell Assay (Abcam) to perform Live / Dead assay mammalian cells - human Mesenchymal stem cells

Products Abcam Live and Dead Cell Assay (Abcam)

Get tips on using mirVana™ miRNA Isolation Kit, with phenol to perform RNA isolation / purification Cells - primary human mononuclear cells

Products Thermo Fisher Scientific mirVana™ miRNA Isolation Kit, with phenol

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms