Site Directed Mutagenesis (SDM) Human Point mutation THP-1

- Found 11482 results

miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time consuming, but provide a more permanent expression of RNAi in the cells, and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines. When using oligos, the ideal concentration lies between 10-50nM for effective transfection.

RNA siRNA / miRNA gene silencing Rat UMR‐106 Becn1

miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time consuming, but provide a more permanent expression of RNAi in the cells, and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines. When using oligos, the ideal concentration lies between 10-50nM for effective transfection.

RNA siRNA / miRNA gene silencing Rat UMR‐106 Ampkα1/Prkaa1

miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time consuming, but provide a more permanent expression of RNAi in the cells, and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines. When using oligos, the ideal concentration lies between 10-50nM for effective transfection.

RNA siRNA / miRNA gene silencing Rat UMR‐106 Ampkα2/Prkaa2

Get tips on using HES1 (D6P2U) Rabbit mAb #11988 to perform Immunohistochemistry Human - Hes1

Products Cell Signaling Technology HES1 (D6P2U) Rabbit mAb #11988

Get tips on using 1ml NCL-L-CK20-561 to perform Immunohistochemistry Human - CK20

Products Leica 1ml NCL-L-CK20-561
Fenozol Product

Get tips on using Fenozol to perform siRNA / miRNA gene silencing Human - HeLa Cdc20

Products A&A Biotechnology Fenozol

Get tips on using SASI_Hs01_00024301 to perform siRNA / miRNA gene silencing Human - MOLT4 RAG1

Products Sigma-Aldrich SASI_Hs01_00024301
SIHK1738 Product

Get tips on using SIHK1738 to perform siRNA / miRNA gene silencing Human - LLC PKN3

Products Sigma-Aldrich SIHK1738
SIHK1738 Product

Get tips on using SIHK1738 to perform siRNA / miRNA gene silencing Human - HeLa PKN3

Products Sigma-Aldrich SIHK1738
NM_001350 Product

Get tips on using NM_001350 to perform siRNA / miRNA gene silencing Human - U2OS DAXX

Products Sigma-Aldrich NM_001350

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms