DNA Damage Assay

- Found 4720 results

DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray Gene expression arrays Mouse brain tissue Biotin

DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray Comperative genomic hybridization Human MDA-MB-453

DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray Comperative genomic hybridization Human MDA-MB-361

Get tips on using TumorTACS™ In Situ Apoptosis Detection Kit to perform TUNEL assay cell type - A549, NCI-H460, H1299 human lung cancer cells

Products Bio-Techne TumorTACS™ In Situ Apoptosis Detection Kit

Get tips on using ROS-ID® Total ROS/Superoxide detection kit to perform ROS assay cell type - BEAS-2B human bronchial epithelial cell line

Products Enzo Life Sciences ROS-ID® Total ROS/Superoxide detection kit

Get tips on using CellROX™ Deep Red Reagent, for oxidative stress detection to perform ROS assay cell type - human umbelical vein endothelial cells (HUVEC)

Products Thermo Fisher Scientific CellROX™ Deep Red Reagent, for oxidative stress detection

Get tips on using MitoSOX™ Red Mitochondrial Superoxide Indicator, for live-cell imaging to perform ROS assay cell type - PC-3 human prostate adenocarcinoma

Products Thermo Fisher Scientific MitoSOX™ Red Mitochondrial Superoxide Indicator, for live-cell imaging

Get tips on using LIVE/DEAD™ Fixable Near-IR Dead Cell Stain Kit, for 633 or 635 nm excitation to perform Live / Dead assay mammalian cells - rat testicular tissue

Products Thermo Fisher Scientific LIVE/DEAD™ Fixable Near-IR Dead Cell Stain Kit, for 633 or 635 nm excitation

Get tips on using Image-IT™ LIVE Green Reactive Oxygen Species Detection Kit, for microscopy to perform ROS assay cell type - H9c2 rat cardiomyocytes

Products Thermo Fisher Scientific Image-IT™ LIVE Green Reactive Oxygen Species Detection Kit, for microscopy

Get tips on using LC3A/B (D3U4C) XP® Rabbit mAb (Alexa Fluor® 488 Conjugate) #13082 to perform Autophagy assay cell type - RAW 264.7

Products Cell Signaling Technology LC3A/B (D3U4C) XP® Rabbit mAb (Alexa Fluor® 488 Conjugate) #13082

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms