rna-isolation-purification-tissue-rat-spinal-cord

- Found 6691 results

Get tips on using Quant-iT™ RiboGreen™ RNA Assay Kit to perform RNA quantification Fuorimetric - human peripheral blood mononuclear cells (PBMCs)

Products Thermo Fisher Scientific Quant-iT™ RiboGreen™ RNA Assay Kit

Get tips on using RediPlate™ 96 RiboGreen™ RNA Quantitation Kit to perform RNA quantification Fuorimetric - human colorectal adenocarcinoma cells (CL-187)

Products Thermo Fisher Scientific RediPlate™ 96 RiboGreen™ RNA Quantitation Kit

Get tips on using GenElute™ Mammalian Total RNA Miniprep Kit to perform

Products Sigma-Aldrich GenElute™ Mammalian Total RNA Miniprep Kit

A gross majority of classical apoptotic attributes can be quantitatively examined by flow cytometry, the preferred platform for rapid assessment of multiple cellular attributes at a single-cell level. However, sample preparation for such flow cytometry-based techniques could be challenging. Cell harvesting by trypsinization, mechanical or enzymatic cell disaggregation from tissues, extensive centrifugation steps, may all lead to preferential loss of apoptotic cells. To overcome this strictly follow manufacturers instruction of the detection kit.

Cellular assays Apoptosis assay cell type RAW 264.7

Microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray RNA amplification & Labeling Mouse cochlaea Biotin

Microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray RNA amplification & Labeling Human blood Biotin

Get tips on using NEBNext® Multiplex Small RNA Library Prep Set for Illumina® to perform RNA sequencing Mouse - C2C12

Products New England BioLabs NEBNext® Multiplex Small RNA Library Prep Set for Illumina®

Get tips on using NEBNext® Multiplex Small RNA Library Prep Set for Illumina® to perform RNA sequencing Human - HEK293T

Products New England BioLabs NEBNext® Multiplex Small RNA Library Prep Set for Illumina®

Get tips on using NEBNext® Multiplex Small RNA Library Prep Set for Illumina® to perform RNA sequencing Mouse - Neuro 2a

Products New England BioLabs NEBNext® Multiplex Small RNA Library Prep Set for Illumina®

Get tips on using NEBNext® Ultra™ RNA Library Prep Kit for Illumina® to perform RNA sequencing Human - SH-SY5Y

Products New England BioLabs NEBNext® Ultra™ RNA Library Prep Kit for Illumina®

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms