siRNA / miRNA gene silencing Human Primary Human Aortic Endothelial Cells GLO-1

- Found 9361 results

Get tips on using Gibco™ DMEM, high glucose to perform Stem cell culture media Human myogenic progenitor cells

Products Fisher Scientific Gibco™ DMEM, high glucose

Get tips on using Micro BCA™ Protein Assay Kit to perform Protein quantification Mammalian cells - Human pluripotent stem cells

Products Thermo Fisher Scientific Micro BCA™ Protein Assay Kit

Get tips on using Pierce™ BCA Protein Assay Kit to perform Protein quantification Mammalian cells - Human pluripotent stem cells

Products Thermo Fisher Scientific Pierce™ BCA Protein Assay Kit

Get tips on using Lipofectamine® 2000 Transfection Reagent to perform DNA transfection Mammalian cells - Primary cells Rat dermal fibroblasts (rDF)

Products Thermo Fisher Scientific Lipofectamine® 2000 Transfection Reagent

Get tips on using MagNA Pure Compact RNA Isolation Kit to perform RNA isolation / purification Cells - primary porcine tracheal epithelial cells

Products Roche Lifesciences MagNA Pure Compact RNA Isolation Kit

Get tips on using X-tremeGENE™ HP DNA Transfection Reagent to perform DNA transfection Mammalian cells - Primary cells Rat astrocytes

Products Sigma-Aldrich X-tremeGENE™ HP DNA Transfection Reagent

Stem cells have the unique ability to self-renew or differentiate themselves into various cell types in response to appropriate signals. These cells are especially important for tissue repair, regeneration, replacement, or in the case of hematopoietic stem cells (HSCs) to differentiate into various myeloid populations. Appropriate signals refer to the growth factor supplements or cytokines that mediate differentiation of various stem cells into the required differentiated form. For instance, HSCs can be differentiated into dendritic cells (with IL-4 and GM-CSF), macrophages (with m-CSF) and MDSCs (with IL-6 and GM-CSF). Human pluripotent stem cells (hPSCs) and induced pluripotent stem cells (iPSCs) can be first cultured in neural differentiation media (GSK3𝛃-i, TGF𝛃-i, AMPK-i, hLIF) to form neural rosettes, which can be differentiated into neural or glial progenitors (finally differentiated into oligodendrocytes). Neural progenitors can be finally differentiated into glutaminergic (dibytyryl cAMP, ascorbic acid) and dopaminergic (SHH, FGF-8, BDNF, GDNF, TGF-𝛃3) neurons. Thus, it is important to first identify the self-renewing cell line: its source and its final differentiation state, followed by the supplements and cytokines required for the differentiation, and final use. Timelines are another thing that is considered. For instance, it takes 7-10 days to form neural rosettes from iPSCs and 3 days to differentiate neural progenitors to neurons. Finally, the stability for stem cell culture media varies. It is advised to make fresh media every time when differentiating HSCs to myeloid populations, whereas neural differentiation media may remain stable for two weeks when stored in dark between 2-8C.

Cell culture media Stem cell Differentiation media hPSCs or iPSCs differentiation into Lung progenitor cells

Get tips on using CelLytic™ NuCLEAR™ Extraction Kit to perform Protein isolation Mammalian cells - Human eutopic endometrial stromal cells

Products Sigma-Aldrich CelLytic™ NuCLEAR™ Extraction Kit

Get tips on using HiPerFect Transfection Reagent (100 ml) to perform siRNA / RNAi /miRNA transfection Bovine - monocyte-derived macrophages

Products Qiagen HiPerFect Transfection Reagent (100 ml)

Get tips on using pET-28b-hBCO1 to perform Protein Expression Prokaryotic cells - E. coli human BCO1

Products Earl H. Harrison, Department of Human Nutrition, Ohio State Bioc pET-28b-hBCO1

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms