ChIP acH4 Mouse Rat

- Found 3581 results

Get tips on using GFAP (GA5) Mouse mAb #3670 to perform Immunohistochemistry Rat - GFAP

Products Cell Signaling Technology GFAP (GA5) Mouse mAb #3670

Get tips on using MAGnify™ Chromatin Immunoprecipitation System to perform ChIP Mouse - RAW264.7

Products Thermo Fisher Scientific MAGnify™ Chromatin Immunoprecipitation System

Get tips on using Imprint® Chromatin Immunoprecipitation Kit to perform ChIP Mouse - RAW264.7

Products Sigma-Aldrich Imprint® Chromatin Immunoprecipitation Kit

Get tips on using Anti-trimethyl-Histone H3 (Lys27) Antibody to perform ChIP H3K27me3 - Sheep Rat YFP Tag

Products Millipore Anti-trimethyl-Histone H3 (Lys27) Antibody

miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time consuming, but provide a more permanent expression of RNAi in the cells, and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines. When using oligos, the ideal concentration lies between 10-50nM for effective transfection.

RNA siRNA / miRNA gene silencing Rat C6 (rat glioma) Gata1

miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time consuming, but provide a more permanent expression of RNAi in the cells, and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines. When using oligos, the ideal concentration lies between 10-50nM for effective transfection.

RNA siRNA / miRNA gene silencing Rat C6 (rat glioma) p53

miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time consuming, but provide a more permanent expression of RNAi in the cells, and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines. When using oligos, the ideal concentration lies between 10-50nM for effective transfection.

RNA siRNA / miRNA gene silencing Rat C6 (rat glioma) mmp15

Get tips on using Rat GFR alpha-1/GDNF R alpha-1 Antibody to perform Immunohistochemistry Mouse - GFRA1

Products R&D system, Minneapolis, MN, USA Rat GFR alpha-1/GDNF R alpha-1 Antibody

Get tips on using ChromaFlash Chromatin Extraction Kit to perform ChIP Mouse - Osteoblasts

Products Epigentek ChromaFlash Chromatin Extraction Kit

Get tips on using Leptin (rat), ELISA kit to perform ELISA Rat - Leptin

Products Enzo Life Sciences Leptin (rat), ELISA kit

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms