siRNA / miRNA gene silencing Human HeLa EPAS-1

- Found 6554 results

Get tips on using Beta-Lactamase Activity Assay Kit to perform Reporter gene assay β-lactamase substrates - Burkholderia cepacia complex

Products Sigma-Aldrich Beta-Lactamase Activity Assay Kit

Get tips on using MethylMiner™ Methylated DNA Enrichment Kit to perform DNA methylation profiling Gene specific profiling - SKOV3 ZIC1

Products Thermo Fisher Scientific MethylMiner™ Methylated DNA Enrichment Kit

Get tips on using EpiTect Fast DNA Bisulfite Kit (50) to perform DNA methylation profiling Gene specific profiling - Hep3B SPRY1

Products Qiagen EpiTect Fast DNA Bisulfite Kit (50)

Get tips on using Luminescent β-galactosidase Detection Kit II to perform Reporter gene assay β-galactosidase substrates - RAW 264.7

Products Takara Bio Inc Luminescent β-galactosidase Detection Kit II

Get tips on using Negative control, native pGL4.13 luciferase vector to perform Reporter gene assay luciferase - negative control (luciferase vector)

Products Promega Negative control, native pGL4.13 luciferase vector

Get tips on using Secrete-Pair™ Dual Luminescence Assay Kit to perform Reporter gene assay β-galactosidase substrates - HUVEC

Products GeneCopoeia Secrete-Pair™ Dual Luminescence Assay Kit

Protein isolation is a technique that involves isolation and/ or purification of protein from cells or tissues via chromatography or electrophoresis. The major challenges in protein isolation include: 1. The concentration of proteins in cells is variable and tends to be small for some intracellular proteins. Unlike nucleic acids, proteins cannot be amplified. 2. Proteins are more unstable than nucleic acids. They are easily denatured under suboptimal temperature, pH or salt concentrations. 3. Finally, no generalized technique/protocol can be applied for protein isolation. Proteins may have different electrostatic (number of positively or negatively charged amino acids) or hydrophobic properties. Therefore, protein purification requires multiple steps depending on their charge (a negatively charged resin/column for positively charged proteins and vice-versa), dissolution (using detergents) and unlike in the case of DNA and RNA, instead of using salts, proteins should be isolated by isoelectric precipitation.

Proteins Protein isolation Mammalian cells MLS-1765

Protein isolation is a technique that involves isolation and/ or purification of protein from cells or tissues via chromatography or electrophoresis. The major challenges in protein isolation include: 1. The concentration of proteins in cells is variable and tends to be small for some intracellular proteins. Unlike nucleic acids, proteins cannot be amplified. 2. Proteins are more unstable than nucleic acids. They are easily denatured under suboptimal temperature, pH or salt concentrations. 3. Finally, no generalized technique/protocol can be applied for protein isolation. Proteins may have different electrostatic (number of positively or negatively charged amino acids) or hydrophobic properties. Therefore, protein purification requires multiple steps depending on their charge (a negatively charged resin/column for positively charged proteins and vice-versa), dissolution (using detergents) and unlike in the case of DNA and RNA, instead of using salts, proteins should be isolated by isoelectric precipitation.

Proteins Protein isolation Mammalian cells ARPE-19

Plasmid isolation is an important technique in molecular biology or any kind of genetic editing. It involves amplifying plasmids overnight by transforming them into competent bacterial cells. The desired colonies of these bacteria can then be grown in shaker cultures, at appropriate shaking speed, oxygen availability and temperature. These liquid cultures can then be ultracentrifuged to pellet the bacteria, which are then used for plasmid isolation. The bacteria are first resuspended in a buffer, then lysed, neutralized, purified in a column, eluted, precipitated with ethanol and then resuspended. During plasmid isolation, it is important to lyse cells quickly because lysing bacteria for too long may lead to irreversible denaturing of the plasmid. Usually, alkaline lysis is used for isolation because it is a mild treatment. It isolates plasmid DNA and other cell components such as proteins by breaking cells apart with an alkaline solution. Precipitation removes the proteins, and the plasmid DNA recovers with alcohol precipitation. Resuspension and lysis buffers should be mixed thoroughly in order to prevent the DNA from breaking into smaller fragments. This is because broken gDNA can reanneal and remain in the solution, without binding to the column.

DNA Plasmid Isolation Helicobacter pylori phage DNA

Get tips on using Wizard® Genomic DNA Purification Kit to perform DNA isolation / purification Bacteria - Gram negative Helicobacter pylori

Products Promega Wizard® Genomic DNA Purification Kit

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms