rna-isolation-purification-cells-immortalized-ntera-2

- Found 9258 results

Get tips on using TIMP2 (D18B7) Rabbit mAb #5738 to perform Western blotting TIMP-2

Products Cell Signaling Technology TIMP2 (D18B7) Rabbit mAb #5738

RNAi or RNA interference is a common method to suppress gene expression in vitro/in vivo by utilizing the inherent microRNA machinery, without introducing a total gene knockout. miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid-mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time-consuming, but provide a more permanent expression of RNAi in the cells and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines.

RNA siRNA / RNAi /miRNA transfection Rat IEC-6 Cationic lipid based

Get tips on using Anti-MUC2 antibody (ab76774) to perform Immunohistochemistry Mouse - Muc-2

Products Abcam Anti-MUC2 antibody (ab76774)

Get tips on using PrimaPure Porcine Endothelial Cells Growth Medium to perform Mammalian cell culture media PAOEC

Products Cell Applications Inc PrimaPure Porcine Endothelial Cells Growth Medium

Get tips on using LIVE/DEAD™ Viability/Cytotoxicity Kit, for mammalian cells to perform Live / Dead assay mammalian cells - rat cardiomyocytes

Products Thermo Fisher Scientific LIVE/DEAD™ Viability/Cytotoxicity Kit, for mammalian cells

Get tips on using LIVE/DEAD™ Viability/Cytotoxicity Kit, for mammalian cells to perform Live / Dead assay mammalian cells - rat MSC

Products Thermo Fisher Scientific LIVE/DEAD™ Viability/Cytotoxicity Kit, for mammalian cells

RNA siRNA / miRNA gene silencing Mouse Glomerular mesangial cells HIPK2 Polymer / Lipid delivery

TUNEL assay is the cell death detection method where the biochemical marker of apoptosis is DNA fragmentation. The assay involves the microscopical detection of generated DNA fragments with free 3'-hydroxyl residues. in apoptotic cells using enzyme terminal deoxynucleotidyl transferase (TdT) which adds biotinylated nucleotides at the site of DNA breaks. Major challenges of this method involve proper access of the enzyme which could be hampered by poor permeabilization and/or excessive fixation with cross-linking fixative (common with archival tissue). This issue can be resolved by optimizing the incubation time with Proteinase K or CytoninTM.

Cellular assays TUNEL assay cell type Rat pulmonary arterial smooth muscle cells

Get tips on using LIVE/DEAD™ Viability/Cytotoxicity Kit, for mammalian cells to perform Live / Dead assay mammalian cells - rat nucleus pulposus

Products Thermo Fisher Scientific LIVE/DEAD™ Viability/Cytotoxicity Kit, for mammalian cells

Get tips on using LIVE/DEAD™ Viability/Cytotoxicity Kit, for mammalian cells to perform Live / Dead assay mammalian cells - rat primary hepatocytes

Products Thermo Fisher Scientific LIVE/DEAD™ Viability/Cytotoxicity Kit, for mammalian cells

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms