DNA methylation profiling Gene specific profiling SKOV3

- Found 4711 results

The formation of DNA from an RNA template using reverse transcription leads to the formation of double-stranded complementary DNA or cDNA. The challenges with this process include 1. Maintaining the integrity of RNA, 2. Hairpin loops or other secondary structures formed by single-stranded RNA can also affect cDNA synthesis, and 3. DNA-RNA hybrids, which may result when the first strand of cDNA is formed. For the first challenge, using workflows that involve proper isolation and storage of RNA, and maintaining a nuclease-free environment helps obtain RNA with ideal 260/230 ratios. Using a reverse transcriptase that can tolerate high temperatures (50-55oC), overcomes obstacles imposed by secondary RNA structures. Finally, RNase H has the ability to hydrolyze RNA before the formation of a second cDNA strand. It is important to ensure that RNase H activity is optimal because higher RNase H activity leads to premature degradation of the RNA template. Many reverse transcriptases offer built-in RNase H activity.

RNA cDNA synthesis Tissue

The formation of DNA from an RNA template using reverse transcription leads to the formation of double-stranded complementary DNA or cDNA. The challenges with this process include 1. Maintaining the integrity of RNA, 2. Hairpin loops or other secondary structures formed by single-stranded RNA can also affect cDNA synthesis, and 3. DNA-RNA hybrids, which may result when the first strand of cDNA is formed. For the first challenge, using workflows that involve proper isolation and storage of RNA, and maintaining a nuclease-free environment helps obtain RNA with ideal 260/230 ratios. Using a reverse transcriptase that can tolerate high temperatures (50-55oC), overcomes obstacles imposed by secondary RNA structures. Finally, RNase H has the ability to hydrolyze RNA before the formation of a second cDNA strand. It is important to ensure that RNase H activity is optimal because higher RNase H activity leads to premature degradation of the RNA template. Many reverse transcriptases offer built-in RNase H activity.

RNA cDNA synthesis Cell lines

The formation of DNA from an RNA template using reverse transcription leads to the formation of double-stranded complementary DNA or cDNA. The challenges with this process include 1. Maintaining the integrity of RNA, 2. Hairpin loops or other secondary structures formed by single-stranded RNA can also affect cDNA synthesis, and 3. DNA-RNA hybrids, which may result when the first strand of cDNA is formed. For the first challenge, using workflows that involve proper isolation and storage of RNA, and maintaining a nuclease-free environment helps obtain RNA with ideal 260/230 ratios. Using a reverse transcriptase that can tolerate high temperatures (50-55oC), overcomes obstacles imposed by secondary RNA structures. Finally, RNase H has the ability to hydrolyze RNA before the formation of a second cDNA strand. It is important to ensure that RNase H activity is optimal because higher RNase H activity leads to premature degradation of the RNA template. Many reverse transcriptases offer built-in RNase H activity.

RNA cDNA synthesis Yeast

DNA Microarray RNA amplification & Labeling Mouse Myofibers Cy3- or/and Cy5

ELISA is the most commonly used method of detecting and quantifying the concentration of an antigen in an unknown sample. During the experiment, If you get a weak signal, then make sure reagents are at room temperature before starting the assay. Try increasing incubation times to ensure maximal antibody binding and amplify the signal. Secondly, if you get values above 0 in the negative control indicates a high background signal. Try to consider reducing your antibody concentration and prevent non-specific binding of antibodies by using affinity-purified antibody and suitable blocking buffers. To avoid high well to well variation, do not stack plates during incubation, no bubbles in the plate and wash wells thoroughly to avoid variation.

Proteins ELISA Human Adiponectin

ELISA is the most commonly used method of detecting and quantifying the concentration of an antigen in an unknown sample. During the experiment, If you get a weak signal, then make sure reagents are at room temperature before starting the assay. Try increasing incubation times to ensure maximal antibody binding and amplify the signal. Secondly, if you get values above 0 in the negative control indicates a high background signal. Try to consider reducing your antibody concentration and prevent non-specific binding of antibodies by using affinity-purified antibody and suitable blocking buffers. To avoid high well to well variation, do not stack plates during incubation, no bubbles in the plate and wash wells thoroughly to avoid variation.

Proteins ELISA Human BMP-2

ELISA is the most commonly used method of detecting and quantifying the concentration of an antigen in an unknown sample. During the experiment, If you get a weak signal, then make sure reagents are at room temperature before starting the assay. Try increasing incubation times to ensure maximal antibody binding and amplify the signal. Secondly, if you get values above 0 in the negative control indicates a high background signal. Try to consider reducing your antibody concentration and prevent non-specific binding of antibodies by using affinity-purified antibody and suitable blocking buffers. To avoid high well to well variation, do not stack plates during incubation, no bubbles in the plate and wash wells thoroughly to avoid variation.

Proteins ELISA Human BDNF

ELISA is the most commonly used method of detecting and quantifying the concentration of an antigen in an unknown sample. During the experiment, If you get a weak signal, then make sure reagents are at room temperature before starting the assay. Try increasing incubation times to ensure maximal antibody binding and amplify the signal. Secondly, if you get values above 0 in the negative control indicates a high background signal. Try to consider reducing your antibody concentration and prevent non-specific binding of antibodies by using affinity-purified antibody and suitable blocking buffers. To avoid high well to well variation, do not stack plates during incubation, no bubbles in the plate and wash wells thoroughly to avoid variation.

Proteins ELISA Human BRCA2

ELISA is the most commonly used method of detecting and quantifying the concentration of an antigen in an unknown sample. During the experiment, If you get a weak signal, then make sure reagents are at room temperature before starting the assay. Try increasing incubation times to ensure maximal antibody binding and amplify the signal. Secondly, if you get values above 0 in the negative control indicates a high background signal. Try to consider reducing your antibody concentration and prevent non-specific binding of antibodies by using affinity-purified antibody and suitable blocking buffers. To avoid high well to well variation, do not stack plates during incubation, no bubbles in the plate and wash wells thoroughly to avoid variation.

Proteins ELISA Human Cytochrome C

ELISA is the most commonly used method of detecting and quantifying the concentration of an antigen in an unknown sample. During the experiment, If you get a weak signal, then make sure reagents are at room temperature before starting the assay. Try increasing incubation times to ensure maximal antibody binding and amplify the signal. Secondly, if you get values above 0 in the negative control indicates a high background signal. Try to consider reducing your antibody concentration and prevent non-specific binding of antibodies by using affinity-purified antibody and suitable blocking buffers. To avoid high well to well variation, do not stack plates during incubation, no bubbles in the plate and wash wells thoroughly to avoid variation.

Proteins ELISA Human Decorin

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms