Protein ladders are a set of standards known as molecular weight proteins that are utilized to identify the approximate size of a protein molecule run on a PAGE gel electrophoresis. The challenges in running the ladders are the choice of appropriate protein standard as it is used as visual evidence of protein migration, transfer efficiency, and positive control. Suitable protein markers can be selected on the basis of required properties and applications, i.e., fluorescent ladder, IEF, 2D SDS-PAGE ladder, natural ladder with an isoelectric point, and optimized ladders for Western Blot chemiluminescence detection. The key factors for running a distinct protein ladder are buffer conditions, charge/voltage at migration time, and the gel's concentration.
Cell cytotoxicity assays measure the ability of certain compounds or chemical mediators to reduce the viability of the cells. The term cell cytotoxicity assay can sometimes be used interchangeably with cell proliferation assay. Healthy living cells can be identified by the use of formazan dyes, protease biomarkers or by measuring ATP content. The formazan dyes are chromogenic products formed by the reduction of tetrazolium salts by dehydrogenases, such as lactate dehydrogenase (LDH) and reductases that are released during cell death. Common tetrazolium salts include INT, MTT, MTS and XTT. Cell cytotoxicity can also be measured by using the SRB and WST-1 assays. These assays can usually be used in a high-throughput fashion and can be quantitated by measuring absorbance, colorimetry or luminescence. All these assays require similar numbers of cell plating at the initiation, a time course of treatment with the cytotoxic agent and at least triplicates for each condition at every point of analysis. Cell shrinkage, plasma membrane blebbing, cell detachment, externalization of phosphatidylserine, nuclear condensation and ultimately DNA fragmentation are well-described features of apoptosis. The assays that rely on cell membrane integrity for their function, may not be able to quantify early apoptosis. Therefore, in order to distinguish early apoptotic vs. late apoptotic or necrotic cells, additional flow cytometry techniques can be used. A combination of Annexin V and PI (propidium iodide) can be used to distinguish early (Annexin V+/PI-) and late apoptotic (Annexin V+/PI+) cells. Sometimes, caspase assays are used in order to differentiate the stages of apoptosis.
Cell cytotoxicity assays measure the ability of certain compounds or chemical mediators to reduce the viability of the cells. The term cell cytotoxicity assay can sometimes be used interchangeably with cell proliferation assay. Healthy living cells can be identified by the use of formazan dyes, protease biomarkers or by measuring ATP content. The formazan dyes are chromogenic products formed by the reduction of tetrazolium salts by dehydrogenases, such as lactate dehydrogenase (LDH) and reductases that are released during cell death. Common tetrazolium salts include INT, MTT, MTS and XTT. Cell cytotoxicity can also be measured by using the SRB and WST-1 assays. These assays can usually be used in a high-throughput fashion and can be quantitated by measuring absorbance, colorimetry or luminescence. All these assays require similar numbers of cell plating at the initiation, a time course of treatment with the cytotoxic agent and at least triplicates for each condition at every point of analysis. Cell shrinkage, plasma membrane blebbing, cell detachment, externalization of phosphatidylserine, nuclear condensation and ultimately DNA fragmentation are well-described features of apoptosis. The assays that rely on cell membrane integrity for their function, may not be able to quantify early apoptosis. Therefore, in order to distinguish early apoptotic vs. late apoptotic or necrotic cells, additional flow cytometry techniques can be used. A combination of Annexin V and PI (propidium iodide) can be used to distinguish early (Annexin V+/PI-) and late apoptotic (Annexin V+/PI+) cells. Sometimes, caspase assays are used in order to differentiate the stages of apoptosis.
Cell cytotoxicity assays measure the ability of certain compounds or chemical mediators to reduce the viability of the cells. The term cell cytotoxicity assay can sometimes be used interchangeably with cell proliferation assay. Healthy living cells can be identified by the use of formazan dyes, protease biomarkers or by measuring ATP content. The formazan dyes are chromogenic products formed by the reduction of tetrazolium salts by dehydrogenases, such as lactate dehydrogenase (LDH) and reductases that are released during cell death. Common tetrazolium salts include INT, MTT, MTS and XTT. Cell cytotoxicity can also be measured by using the SRB and WST-1 assays. These assays can usually be used in a high-throughput fashion and can be quantitated by measuring absorbance, colorimetry or luminescence. All these assays require similar numbers of cell plating at the initiation, a time course of treatment with the cytotoxic agent and at least triplicates for each condition at every point of analysis. Cell shrinkage, plasma membrane blebbing, cell detachment, externalization of phosphatidylserine, nuclear condensation and ultimately DNA fragmentation are well-described features of apoptosis. The assays that rely on cell membrane integrity for their function, may not be able to quantify early apoptosis. Therefore, in order to distinguish early apoptotic vs. late apoptotic or necrotic cells, additional flow cytometry techniques can be used. A combination of Annexin V and PI (propidium iodide) can be used to distinguish early (Annexin V+/PI-) and late apoptotic (Annexin V+/PI+) cells. Sometimes, caspase assays are used in order to differentiate the stages of apoptosis.
Cell cytotoxicity assays measure the ability of certain compounds or chemical mediators to reduce the viability of the cells. The term cell cytotoxicity assay can sometimes be used interchangeably with cell proliferation assay. Healthy living cells can be identified by the use of formazan dyes, protease biomarkers or by measuring ATP content. The formazan dyes are chromogenic products formed by the reduction of tetrazolium salts by dehydrogenases, such as lactate dehydrogenase (LDH) and reductases that are released during cell death. Common tetrazolium salts include INT, MTT, MTS and XTT. Cell cytotoxicity can also be measured by using the SRB and WST-1 assays. These assays can usually be used in a high-throughput fashion and can be quantitated by measuring absorbance, colorimetry or luminescence. All these assays require similar numbers of cell plating at the initiation, a time course of treatment with the cytotoxic agent and at least triplicates for each condition at every point of analysis. Cell shrinkage, plasma membrane blebbing, cell detachment, externalization of phosphatidylserine, nuclear condensation and ultimately DNA fragmentation are well-described features of apoptosis. The assays that rely on cell membrane integrity for their function, may not be able to quantify early apoptosis. Therefore, in order to distinguish early apoptotic vs. late apoptotic or necrotic cells, additional flow cytometry techniques can be used. A combination of Annexin V and PI (propidium iodide) can be used to distinguish early (Annexin V+/PI-) and late apoptotic (Annexin V+/PI+) cells. Sometimes, caspase assays are used in order to differentiate the stages of apoptosis.
Cell cytotoxicity assays measure the ability of certain compounds or chemical mediators to reduce the viability of the cells. The term cell cytotoxicity assay can sometimes be used interchangeably with cell proliferation assay. Healthy living cells can be identified by the use of formazan dyes, protease biomarkers or by measuring ATP content. The formazan dyes are chromogenic products formed by the reduction of tetrazolium salts by dehydrogenases, such as lactate dehydrogenase (LDH) and reductases that are released during cell death. Common tetrazolium salts include INT, MTT, MTS and XTT. Cell cytotoxicity can also be measured by using the SRB and WST-1 assays. These assays can usually be used in a high-throughput fashion and can be quantitated by measuring absorbance, colorimetry or luminescence. All these assays require similar numbers of cell plating at the initiation, a time course of treatment with the cytotoxic agent and at least triplicates for each condition at every point of analysis. Cell shrinkage, plasma membrane blebbing, cell detachment, externalization of phosphatidylserine, nuclear condensation and ultimately DNA fragmentation are well-described features of apoptosis. The assays that rely on cell membrane integrity for their function, may not be able to quantify early apoptosis. Therefore, in order to distinguish early apoptotic vs. late apoptotic or necrotic cells, additional flow cytometry techniques can be used. A combination of Annexin V and PI (propidium iodide) can be used to distinguish early (Annexin V+/PI-) and late apoptotic (Annexin V+/PI+) cells. Sometimes, caspase assays are used in order to differentiate the stages of apoptosis.
Cell cytotoxicity assays measure the ability of certain compounds or chemical mediators to reduce the viability of the cells. The term cell cytotoxicity assay can sometimes be used interchangeably with cell proliferation assay. Healthy living cells can be identified by the use of formazan dyes, protease biomarkers or by measuring ATP content. The formazan dyes are chromogenic products formed by the reduction of tetrazolium salts by dehydrogenases, such as lactate dehydrogenase (LDH) and reductases that are released during cell death. Common tetrazolium salts include INT, MTT, MTS and XTT. Cell cytotoxicity can also be measured by using the SRB and WST-1 assays. These assays can usually be used in a high-throughput fashion and can be quantitated by measuring absorbance, colorimetry or luminescence. All these assays require similar numbers of cell plating at the initiation, a time course of treatment with the cytotoxic agent and at least triplicates for each condition at every point of analysis. Cell shrinkage, plasma membrane blebbing, cell detachment, externalization of phosphatidylserine, nuclear condensation and ultimately DNA fragmentation are well-described features of apoptosis. The assays that rely on cell membrane integrity for their function, may not be able to quantify early apoptosis. Therefore, in order to distinguish early apoptotic vs. late apoptotic or necrotic cells, additional flow cytometry techniques can be used. A combination of Annexin V and PI (propidium iodide) can be used to distinguish early (Annexin V+/PI-) and late apoptotic (Annexin V+/PI+) cells. Sometimes, caspase assays are used in order to differentiate the stages of apoptosis.
Cell cytotoxicity assays measure the ability of certain compounds or chemical mediators to reduce the viability of the cells. The term cell cytotoxicity assay can sometimes be used interchangeably with cell proliferation assay. Healthy living cells can be identified by the use of formazan dyes, protease biomarkers or by measuring ATP content. The formazan dyes are chromogenic products formed by the reduction of tetrazolium salts by dehydrogenases, such as lactate dehydrogenase (LDH) and reductases that are released during cell death. Common tetrazolium salts include INT, MTT, MTS and XTT. Cell cytotoxicity can also be measured by using the SRB and WST-1 assays. These assays can usually be used in a high-throughput fashion and can be quantitated by measuring absorbance, colorimetry or luminescence. All these assays require similar numbers of cell plating at the initiation, a time course of treatment with the cytotoxic agent and at least triplicates for each condition at every point of analysis. Cell shrinkage, plasma membrane blebbing, cell detachment, externalization of phosphatidylserine, nuclear condensation and ultimately DNA fragmentation are well-described features of apoptosis. The assays that rely on cell membrane integrity for their function, may not be able to quantify early apoptosis. Therefore, in order to distinguish early apoptotic vs. late apoptotic or necrotic cells, additional flow cytometry techniques can be used. A combination of Annexin V and PI (propidium iodide) can be used to distinguish early (Annexin V+/PI-) and late apoptotic (Annexin V+/PI+) cells. Sometimes, caspase assays are used in order to differentiate the stages of apoptosis.
Cell cytotoxicity assays measure the ability of certain compounds or chemical mediators to reduce the viability of the cells. The term cell cytotoxicity assay can sometimes be used interchangeably with cell proliferation assay. Healthy living cells can be identified by the use of formazan dyes, protease biomarkers or by measuring ATP content. The formazan dyes are chromogenic products formed by the reduction of tetrazolium salts by dehydrogenases, such as lactate dehydrogenase (LDH) and reductases that are released during cell death. Common tetrazolium salts include INT, MTT, MTS and XTT. Cell cytotoxicity can also be measured by using the SRB and WST-1 assays. These assays can usually be used in a high-throughput fashion and can be quantitated by measuring absorbance, colorimetry or luminescence. All these assays require similar numbers of cell plating at the initiation, a time course of treatment with the cytotoxic agent and at least triplicates for each condition at every point of analysis. Cell shrinkage, plasma membrane blebbing, cell detachment, externalization of phosphatidylserine, nuclear condensation and ultimately DNA fragmentation are well-described features of apoptosis. The assays that rely on cell membrane integrity for their function, may not be able to quantify early apoptosis. Therefore, in order to distinguish early apoptotic vs. late apoptotic or necrotic cells, additional flow cytometry techniques can be used. A combination of Annexin V and PI (propidium iodide) can be used to distinguish early (Annexin V+/PI-) and late apoptotic (Annexin V+/PI+) cells. Sometimes, caspase assays are used in order to differentiate the stages of apoptosis.
Cell cytotoxicity assays measure the ability of certain compounds or chemical mediators to reduce the viability of the cells. The term cell cytotoxicity assay can sometimes be used interchangeably with cell proliferation assay. Healthy living cells can be identified by the use of formazan dyes, protease biomarkers or by measuring ATP content. The formazan dyes are chromogenic products formed by the reduction of tetrazolium salts by dehydrogenases, such as lactate dehydrogenase (LDH) and reductases that are released during cell death. Common tetrazolium salts include INT, MTT, MTS and XTT. Cell cytotoxicity can also be measured by using the SRB and WST-1 assays. These assays can usually be used in a high-throughput fashion and can be quantitated by measuring absorbance, colorimetry or luminescence. All these assays require similar numbers of cell plating at the initiation, a time course of treatment with the cytotoxic agent and at least triplicates for each condition at every point of analysis. Cell shrinkage, plasma membrane blebbing, cell detachment, externalization of phosphatidylserine, nuclear condensation and ultimately DNA fragmentation are well-described features of apoptosis. The assays that rely on cell membrane integrity for their function, may not be able to quantify early apoptosis. Therefore, in order to distinguish early apoptotic vs. late apoptotic or necrotic cells, additional flow cytometry techniques can be used. A combination of Annexin V and PI (propidium iodide) can be used to distinguish early (Annexin V+/PI-) and late apoptotic (Annexin V+/PI+) cells. Sometimes, caspase assays are used in order to differentiate the stages of apoptosis.
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment