siRNA / miRNA gene silencing Human HeLa

- Found 5394 results

Get tips on using GeneArt™ Site-Directed Mutagenesis System to perform Site Directed Mutagenesis (SDM) Mouse - 3T3-L1 S6 kinase 1

Products Thermo Fisher Scientific GeneArt™ Site-Directed Mutagenesis System

Get tips on using GeneArt™ Site-Directed Mutagenesis System to perform Site Directed Mutagenesis (SDM) Monkey - Point mutation Vero UL23 thymidine kinase

Products Thermo Fisher Scientific GeneArt™ Site-Directed Mutagenesis System

Get tips on using GeneArt™ CRISPR Nuclease Vector with CD4 Enrichment Kit to perform CRISPR Mouse - Deletion NIH 3T3 G3BP

Products Thermo Fisher Scientific GeneArt™ CRISPR Nuclease Vector with CD4 Enrichment Kit

Get tips on using GeneArt™ CRISPR Nuclease Vector with CD4 Enrichment Kit to perform CRISPR Mouse - Deletion NIH 3T3 FXR

Products Thermo Fisher Scientific GeneArt™ CRISPR Nuclease Vector with CD4 Enrichment Kit

Get tips on using GeneArt™ Site-Directed Mutagenesis PLUS System to perform Site Directed Mutagenesis (SDM) Rat - Point mutation Rat-2 PIK3CB

Products Thermo Fisher Scientific GeneArt™ Site-Directed Mutagenesis PLUS System

Get tips on using GeneArt™ Site-Directed Mutagenesis System to perform Site Directed Mutagenesis (SDM) Mouse - Point mutation 3T3-L1 S6 kinase 1

Products Thermo Fisher Scientific GeneArt™ Site-Directed Mutagenesis System

Get tips on using GeneChip® HT 3' IVT PLUS Reagent Kit to perform Microarray RNA amplification & Labeling - Mouse brain tissue Biotin

Products Thermo Fisher Scientific GeneChip® HT 3' IVT PLUS Reagent Kit

The formation of DNA from an RNA template using reverse transcription leads to the formation of double-stranded complementary DNA or cDNA. The challenges with this process include 1. Maintaining the integrity of RNA, 2. Hairpin loops or other secondary structures formed by single-stranded RNA can also affect cDNA synthesis, and 3. DNA-RNA hybrids, which may result when the first strand of cDNA is formed. For the first challenge, using workflows that involve proper isolation and storage of RNA, and maintaining a nuclease-free environment helps obtain RNA with ideal 260/230 ratios. Using a reverse transcriptase that can tolerate high temperatures (50-55oC), overcomes obstacles imposed by secondary RNA structures. Finally, RNase H has the ability to hydrolyze RNA before the formation of a second cDNA strand. It is important to ensure that RNase H activity is optimal because higher RNase H activity leads to premature degradation of the RNA template. Many reverse transcriptases offer built-in RNase H activity.

RNA cDNA synthesis Tissue

The formation of DNA from an RNA template using reverse transcription leads to the formation of double-stranded complementary DNA or cDNA. The challenges with this process include 1. Maintaining the integrity of RNA, 2. Hairpin loops or other secondary structures formed by single-stranded RNA can also affect cDNA synthesis, and 3. DNA-RNA hybrids, which may result when the first strand of cDNA is formed. For the first challenge, using workflows that involve proper isolation and storage of RNA, and maintaining a nuclease-free environment helps obtain RNA with ideal 260/230 ratios. Using a reverse transcriptase that can tolerate high temperatures (50-55oC), overcomes obstacles imposed by secondary RNA structures. Finally, RNase H has the ability to hydrolyze RNA before the formation of a second cDNA strand. It is important to ensure that RNase H activity is optimal because higher RNase H activity leads to premature degradation of the RNA template. Many reverse transcriptases offer built-in RNase H activity.

RNA cDNA synthesis Cell lines

The formation of DNA from an RNA template using reverse transcription leads to the formation of double-stranded complementary DNA or cDNA. The challenges with this process include 1. Maintaining the integrity of RNA, 2. Hairpin loops or other secondary structures formed by single-stranded RNA can also affect cDNA synthesis, and 3. DNA-RNA hybrids, which may result when the first strand of cDNA is formed. For the first challenge, using workflows that involve proper isolation and storage of RNA, and maintaining a nuclease-free environment helps obtain RNA with ideal 260/230 ratios. Using a reverse transcriptase that can tolerate high temperatures (50-55oC), overcomes obstacles imposed by secondary RNA structures. Finally, RNase H has the ability to hydrolyze RNA before the formation of a second cDNA strand. It is important to ensure that RNase H activity is optimal because higher RNase H activity leads to premature degradation of the RNA template. Many reverse transcriptases offer built-in RNase H activity.

RNA cDNA synthesis Yeast

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms