siRNA / miRNA gene silencing Human COV-434

- Found 6616 results

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Mouse Activation C2C12 FST

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Mouse Activation C2C12 Lama1

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Rat Activation CD38

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Rat Activation CD2

Get tips on using Gibco™DMEM, low glucose, pyruvate to perform Stem cell Differentiation media human umbilical mesenchymal stem cells (hUMSCs) differentiation into osteogenic cells

Products Thermo Fisher Scientific Gibco™DMEM, low glucose, pyruvate

Get tips on using Mesenchymal Stem Cell Osteogenic Differentiation Medium to perform Stem cell Differentiation media human umbilical mesenchymal stem cells (hUMSCs) differentiation into osteogenic cells

Products Cyagen US Inc. Mesenchymal Stem Cell Osteogenic Differentiation Medium

Get tips on using Q5® Site-Directed Mutagenesis Kit to perform Site Directed Mutagenesis (SDM) Human - Point mutation LNCaP Androgen Receptor splice variant (AR-V)

Products New England BioLabs Q5® Site-Directed Mutagenesis Kit

Get tips on using In Situ Cell Death Detection Kit, Fluorescein to perform TUNEL assay cell type - HNSCC Detroit 562 human head and neck tumor cells

Products Sigma-Aldrich In Situ Cell Death Detection Kit, Fluorescein

Get tips on using AmpFLSTR™ Identifiler™ Plus PCR Amplification Kit to perform Cell line authentication Human iPSC cells derived from peripheral blood mononuclear cells

Products Thermo Fisher Scientific AmpFLSTR™ Identifiler™ Plus PCR Amplification Kit

Get tips on using In Situ Cell Death Detection Kit, TMR red to perform TUNEL assay cell type - A549, NCI-H460, H1299 human lung cancer cells

Products Sigma-Aldrich In Situ Cell Death Detection Kit, TMR red

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms