Site Directed Mutagenesis (SDM) Human Deletion K562

- Found 6383 results

Get tips on using pSpCas9(BB)-2A-GFP (PX458) to perform CRISPR Mouse - Deletion ES (embryonic stem) cells MIR

Products Addgene pSpCas9(BB)-2A-GFP (PX458)

Get tips on using pSpCas9(BB)-2A-Puro (PX459) V2.0 to perform CRISPR Mouse - Deletion ATDC5 MEK1

Products Addgene pSpCas9(BB)-2A-Puro (PX459) V2.0

Get tips on using pSpCas9(BB)-2A-Puro (PX459) to perform CRISPR Mouse - Deletion ES (embryonic stem) cells Etv2 promoter

Products Addgene pSpCas9(BB)-2A-Puro (PX459)

Get tips on using pSpCas9(BB)-2A-Puro (PX459) V2.0 to perform CRISPR Mouse - Deletion 3T3-L1 SWELL1

Products Addgene pSpCas9(BB)-2A-Puro (PX459) V2.0

Get tips on using pX330-U6-Chimeric_BB-CBh-hSpCas9 to perform CRISPR Rat - Deletion INS-1 832/13 Ep300

Products Addgene pX330-U6-Chimeric_BB-CBh-hSpCas9

Get tips on using MYH9 CRISPR/Cas9 KO Plasmid (h) to perform CRISPR Rat - Deletion PC12 myosin IIA (Myh9)

Products Santa Cruz Biotechnology MYH9 CRISPR/Cas9 KO Plasmid (h)

Short hairpin or small hairpin RNA (shRNA) is artificial RNA, which has a hairpin loop structure, and uses inherent microRNA (miRNA) machinery to silence target gene expression. This is called RNA interference (RNAi). These can be delivered via plasmids or viral/bacterial vectors. Challenges in shRNA-mediated gene silencing include 1. Off-target silencing, 2. Packaging shRNA encoding lentivirus, and 3. Stable transduction in cells. RNAi has been designed to have anywhere from 19-27 bs, but the most effective design has 19 bp. In case commercial shRNAs are not available, potential target sites can be chosen within exon, 5’- or 3’ UTR, depending on which splice variants of the gene are desired. One should use the latest algorithms and choose at least two different sequences, targeting different regions, in order to have confidence in overcoming off-target effects. A BLAST search after selecting potential design will eliminate potential off-target sequences. For the second challenge, sequencing the vector using primers for either strand (50-100 bp upstream) is suggested, along with using enzymatic digestion on agarose gel for the vector. Next, once the shRNA-containing vector is packaged in a virus, it is important to check the viral titer before transduction. Finally, using a marker in the lentiviral vector (fluorescent protein or antibiotic resistance), along with qPCR for target gene expression can help in determining the efficacy of transduction and shRNA on its target site.

RNA shRNA gene silencing Human SiHa MCM4

Get tips on using pSpCas9(BB)-2A-Puro (PX459) V2.0 to perform CRISPR Mouse - Deletion 3T3-L1 fmnl 2/3

Products Addgene pSpCas9(BB)-2A-Puro (PX459) V2.0

miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time consuming, but provide a more permanent expression of RNAi in the cells, and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines. When using oligos, the ideal concentration lies between 10-50nM for effective transfection.

RNA siRNA / miRNA gene silencing Human Primary Human Hepatocytes CYP3A4

miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time consuming, but provide a more permanent expression of RNAi in the cells, and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines. When using oligos, the ideal concentration lies between 10-50nM for effective transfection.

RNA siRNA / miRNA gene silencing Human Primary Human Hepatocytes CYP2B6

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms