Get tips on using REPLI-g Advanced DNA Single Cell Kit (96) to perform Whole Genome Amplification Mouse
Get tips on using QIAseq FX Single Cell DNA Library Kit (96) to perform Whole Genome Amplification Parasites
Get tips on using SurePrint G3 Mouse GE 8x60K Microarray Kit to perform Microarray Comperative genomic hybridization - Mouse iPSC
Get tips on using Imprint® Methylated DNA Quantification Kit to perform DNA methylation profiling Whole genome profiling - mouse liver tissue
Get tips on using MethylFlash™ Methylated DNA Quantification Kit to perform DNA methylation profiling Whole genome profiling - mouse hippocampal tissue
Get tips on using Imprint® Methylated DNA Quantification Kit to perform DNA methylation profiling Whole genome profiling - rat mammary tissue
Get tips on using Imprint® Methylated DNA Quantification Kit to perform DNA methylation profiling Whole genome profiling - C2C12 mouse myoblast cells
Get tips on using MethylFlash™ Methylated DNA Quantification Kit to perform DNA methylation profiling Whole genome profiling - rat renal cortex tissue
Get tips on using MethylFlash Methylated DNA 5-mC Quantification Kit to perform DNA methylation profiling Whole genome profiling - C2C12 mouse myoblast cells
Stem cells have the unique ability to self-renew or differentiate themselves into various cell types in response to appropriate signals. These cells are especially important for tissue repair, regeneration, replacement, or in the case of hematopoietic stem cells (HSCs) to differentiate into various myeloid populations. Appropriate signals refer to the growth factor supplements or cytokines that mediate differentiation of various stem cells into the required differentiated form. For instance, HSCs can be differentiated into dendritic cells (with IL-4 and GM-CSF), macrophages (with m-CSF) and MDSCs (with IL-6 and GM-CSF). Human pluripotent stem cells (hPSCs) and induced pluripotent stem cells (iPSCs) can be first cultured in neural differentiation media (GSK3𝛃-i, TGF𝛃-i, AMPK-i, hLIF) to form neural rosettes, which can be differentiated into neural or glial progenitors (finally differentiated into oligodendrocytes). Neural progenitors can be finally differentiated into glutaminergic (dibytyryl cAMP, ascorbic acid) and dopaminergic (SHH, FGF-8, BDNF, GDNF, TGF-𝛃3) neurons. Thus, it is important to first identify the self-renewing cell line: its source and its final differentiation state, followed by the supplements and cytokines required for the differentiation, and final use. Timelines are another thing that is considered. For instance, it takes 7-10 days to form neural rosettes from iPSCs and 3 days to differentiate neural progenitors to neurons. Finally, the stability for stem cell culture media varies. It is advised to make fresh media every time when differentiating HSCs to myeloid populations, whereas neural differentiation media may remain stable for two weeks when stored in dark between 2-8C.
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment