shRNA gene silencing Human TF‐1

- Found 6085 results

When extracting nucleic acids from cell cultures, thorough homogenization of cells via vortexing in lysis buffer is very necessary. Choose the best RNA isolation method keeping in mind the downstream applications, generally, column-based isolations result in clean and concentrated RNA samples. Downstream applications like sequencing and cDNA synthesis require high-quality RNA, always treat the samples with DNases and check their integrity by running a gel.

RNA RNA isolation / purification Cells primary mouse ventricles

Generally isolating RNA from Gram-negative bacteria is easy, however keeping your working environment clean and RNase free (use RNase inhibitor) is essential. Some common points to keep in mind: a) Use fresh samples for isolation or store them by freezing in RNA stabilizing buffer until use. b) Choose the bacterial input amounts carefully, to ensure buffer volumes are adequate and not to overload the columns.

RNA RNA isolation / purification Bacteria Gram negative Bordetella pertussis

Generally isolating RNA from Gram-negative bacteria is easy, however keeping your working environment clean and RNase free (use RNase inhibitor) is essential. Some common points to keep in mind: a) Use fresh samples for isolation or store them by freezing in RNA stabilizing buffer until use. b) Choose the bacterial input amounts carefully, to ensure buffer volumes are adequate and not to overload the columns.

RNA RNA isolation / purification Bacteria Gram negative Borrelia burgdorferi

Generally isolating RNA from Gram-negative bacteria is easy, however keeping your working environment clean and RNase free (use RNase inhibitor) is essential. Some common points to keep in mind: a) Use fresh samples for isolation or store them by freezing in RNA stabilizing buffer until use. b) Choose the bacterial input amounts carefully, to ensure buffer volumes are adequate and not to overload the columns.

RNA RNA isolation / purification Bacteria Gram negative Chlamydia pneumoniae

Generally isolating RNA from Gram-negative bacteria is easy, however keeping your working environment clean and RNase free (use RNase inhibitor) is essential. Some common points to keep in mind: a) Use fresh samples for isolation or store them by freezing in RNA stabilizing buffer until use. b) Choose the bacterial input amounts carefully, to ensure buffer volumes are adequate and not to overload the columns.

RNA RNA isolation / purification Bacteria Gram negative Haemophilus influenzae

Generally isolating RNA from Gram-negative bacteria is easy, however keeping your working environment clean and RNase free (use RNase inhibitor) is essential. Some common points to keep in mind: a) Use fresh samples for isolation or store them by freezing in RNA stabilizing buffer until use. b) Choose the bacterial input amounts carefully, to ensure buffer volumes are adequate and not to overload the columns.

RNA RNA isolation / purification Bacteria Gram negative Helicobacter pylori

Generally isolating RNA from Gram-negative bacteria is easy, however keeping your working environment clean and RNase free (use RNase inhibitor) is essential. Some common points to keep in mind: a) Use fresh samples for isolation or store them by freezing in RNA stabilizing buffer until use. b) Choose the bacterial input amounts carefully, to ensure buffer volumes are adequate and not to overload the columns.

RNA RNA isolation / purification Bacteria Gram negative Klebsiella pneumoniae

Generally isolating RNA from Gram-negative bacteria is easy, however keeping your working environment clean and RNase free (use RNase inhibitor) is essential. Some common points to keep in mind: a) Use fresh samples for isolation or store them by freezing in RNA stabilizing buffer until use. b) Choose the bacterial input amounts carefully, to ensure buffer volumes are adequate and not to overload the columns.

RNA RNA isolation / purification Bacteria Gram negative Legionella pneumophilia

Generally isolating RNA from Gram-negative bacteria is easy, however keeping your working environment clean and RNase free (use RNase inhibitor) is essential. Some common points to keep in mind: a) Use fresh samples for isolation or store them by freezing in RNA stabilizing buffer until use. b) Choose the bacterial input amounts carefully, to ensure buffer volumes are adequate and not to overload the columns.

RNA RNA isolation / purification Bacteria Gram negative Salmonella typhi

The most widely used method for protein quantification is by spectrophotometry. The concentration of the protein in the samples is measured at an absorbance of 280 nm. The absorbance of the sample protein is then plotted against a standard curve. This method allows for total protein quantification in a sample (cell and tissue extracts). Before analysing the concentration of protein in the sample, it is important to choose the right test method.  For high protein concentration samples (above 5 - 160 mg/ml) the best method is to use the Biuret test. For low concentrations samples (between 1 - 2000µg/ml) the best methods are Lowry assay, BCA assay, Bradford assay and coomassie blue (for exact sensitivity of the test kits you use, refer to manufacturer's protocol). If the samples contain detergents like Triton X-100 then BCA assay is the best choice. For samples that have proteins larger than 3 KDa in size Bradford assay is the best choice. Each method has advantages and disadvantages, plan your analysis considering your sample characteristics.

Proteins Protein quantification Colorimetric method

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms