Protein expression and purification Insect cells

- Found 9456 results

Though DNA quantification is but one small step in the multifaceted DNA sample preparation workflow, it can have large implications on the performance and validity of conclusions drawn from downstream assays. Major challenges include accuracy, precision, reproducibility, and detection of present contamination. Among UV spectrophotometry, fluorescence and real-time PCR based methods, the quantification method should be chosen based on the requirement of the downstream assay.

DNA DNA quantification Human PC-3

Get tips on using Lipofectamine® 2000 Transfection Reagent to perform DNA transfection Mammalian cells - Primary cells Rat mesangial cells

Products Thermo Fisher Scientific Lipofectamine® 2000 Transfection Reagent

Get tips on using FuGENE® HD Transfection Reagent to perform DNA transfection Mammalian cells - Primary cells Rat mesangial cells

Products Promega FuGENE® HD Transfection Reagent

Get tips on using Lipofectamine™ 3000 Transfection Reagent to perform DNA transfection Mammalian cells - Primary cells Rat schwann cells

Products Thermo Fisher Scientific Lipofectamine™ 3000 Transfection Reagent

RNA quantification for appropriate concentration and quality (260/280 ratio) is an important step before downstream analysis (including sequencing, RT-qPCR, etc.). Having insufficient RNA quantities or a high salt or phenol in the RNA product can lead to variable or irreproducible downstream results. The various methods used for RNA quantification include: 1. UV spectrophotometric (challenges include: low sensitivity, cannot distinguish between nucleic acid species), 2. Fluorescence-based (challenges include: requires standards, cannot measure amplifiability, not sequence-specific), and 3. RT-PCR (challenges include: requires standards, time-intensive, costly). In order to overcome these challenges, and also to ensure the proper quantification and quality control for RNA product, it is important to use at least two or more methods in order to discard any inconsistencies. Using standards for calibrations increases the sensitivity range for RNA detention (fluorescence- and RT-PCR-based methods). When using RT- PCR, it is important to choose correct primers, aligning to the desired site on the template and of appropriate product length, along with positive, negative and loading controls. It is also important to have at least two primer pairs in order to confirm results.

RNA RNA quantification qPCR

RNA quantification for appropriate concentration and quality (260/280 ratio) is an important step before downstream analysis (including sequencing, RT-qPCR, etc.). Having insufficient RNA quantities or a high salt or phenol in the RNA product can lead to variable or irreproducible downstream results. The various methods used for RNA quantification include: 1. UV spectrophotometric (challenges include: low sensitivity, cannot distinguish between nucleic acid species), 2. Fluorescence-based (challenges include: requires standards, cannot measure amplifiability, not sequence-specific), and 3. RT-PCR (challenges include: requires standards, time-intensive, costly). In order to overcome these challenges, and also to ensure the proper quantification and quality control for RNA product, it is important to use at least two or more methods in order to discard any inconsistencies. Using standards for calibrations increases the sensitivity range for RNA detention (fluorescence- and RT-PCR-based methods). When using RT- PCR, it is important to choose correct primers, aligning to the desired site on the template and of appropriate product length, along with positive, negative and loading controls. It is also important to have at least two primer pairs in order to confirm results.

RNA RNA quantification Coloremetric

RNA quantification for appropriate concentration and quality (260/280 ratio) is an important step before downstream analysis (including sequencing, RT-qPCR, etc.). Having insufficient RNA quantities or a high salt or phenol in the RNA product can lead to variable or irreproducible downstream results. The various methods used for RNA quantification include: 1. UV spectrophotometric (challenges include: low sensitivity, cannot distinguish between nucleic acid species), 2. Fluorescence-based (challenges include: requires standards, cannot measure amplifiability, not sequence-specific), and 3. RT-PCR (challenges include: requires standards, time-intensive, costly). In order to overcome these challenges, and also to ensure the proper quantification and quality control for RNA product, it is important to use at least two or more methods in order to discard any inconsistencies. Using standards for calibrations increases the sensitivity range for RNA detention (fluorescence- and RT-PCR-based methods). When using RT- PCR, it is important to choose correct primers, aligning to the desired site on the template and of appropriate product length, along with positive, negative and loading controls. It is also important to have at least two primer pairs in order to confirm results.

RNA RNA quantification Fuorimetric

Get tips on using SuperFect Transfection Reagent to perform DNA transfection Mammalian cells - Primary cells Human aortic smooth muscle cells (HOSMC)

Products Qiagen SuperFect Transfection Reagent

Get tips on using FuGENE® 6 Transfection Reagent to perform DNA transfection Mammalian cells - Primary cells Rat hepatic stellate cells

Products Promega FuGENE® 6 Transfection Reagent

Get tips on using Lipofectamine® 2000 Transfection Reagent to perform DNA transfection Mammalian cells - Primary cells Rat hepatic stellate cells

Products Thermo Fisher Scientific Lipofectamine® 2000 Transfection Reagent

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms