miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time consuming, but provide a more permanent expression of RNAi in the cells, and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines. When using oligos, the ideal concentration lies between 10-50nM for effective transfection.
miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time consuming, but provide a more permanent expression of RNAi in the cells, and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines. When using oligos, the ideal concentration lies between 10-50nM for effective transfection.
Get tips on using EasySep™ Human Monocyte Enrichment Kit without CD16 Depletion to perform Cell Isolation Monocyte
Get tips on using B-PER™ Bacterial Protein Extraction Reagent to perform Protein isolation Bacteria - Synechocystis sp (6803)_Cyanobacteria
Get tips on using NE-PER™ Nuclear and Cytoplasmic Extraction Reagents to perform Protein isolation Tissue - ME epithelial tissue
Get tips on using QIAGEN Large-Construct Kit to perform Plasmid Isolation Shiga toxin-producing E. coli
Get tips on using Amino Allyl MessageAmp™ II aRNA Amplification Kit to perform RNA amplification & labeling Fish - Total RNA, Fundulus heteroclitus Cyanine 3 & 5
Get tips on using FastGene Plasmid Mini Kit (100) to perform Plasmid Isolation Helicobacter pylori phage DNA
Get tips on using NucleoBond® Xtra Midi / Maxi to perform Plasmid Isolation Medicago truncatula BAC clone
Get tips on using Qproteome Bacterial Protein Prep Kit to perform Protein isolation Bacteria - Salmonella paratyphi A
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment