Immunohistochemistry 53BP2 phospho (ser-25) Rabbit IgG Human

- Found 6044 results

Get tips on using SurePrint G3 Mouse Exon 4x180K Microarray Kit (165,984 Exon probes) to perform Microarray Gene expression arrays - Mouse Cyanine-CTP

Products Agilent Technologies SurePrint G3 Mouse Exon 4x180K Microarray Kit (165,984 Exon probes)

Get tips on using Gal-Screen™ β-Galactosidase Reporter Gene Assay System for Mammalian Cells to perform Reporter gene assay β-galactosidase substrates - yeast, Yarrowia lipolytica

Products Thermo Fisher Scientific Gal-Screen™ β-Galactosidase Reporter Gene Assay System for Mammalian Cells

The biggest problem in isolating RNA from gram-positive bacteria is the disruption of the cell wall. A lot of protocols employ enzymatic digestion (pretreatment) which may affect gene expression patterns of certain genes. Therefore physical disruption using beads could be the best alternative.

RNA RNA isolation / purification Bacteria Gram positive Streptococcus pneumoniae

The biggest problem in isolating RNA from gram-positive bacteria is the disruption of the cell wall. A lot of protocols employ enzymatic digestion (pretreatment) which may affect gene expression patterns of certain genes. Therefore physical disruption using beads can be a best alternative.

RNA RNA isolation / purification Bacteria Gram positive Streptococcus pyogenes

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Mouse Activation 3T3-L1 C/EBPβ

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Mouse Deletion 3T3-L1 PTRF

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Mouse Deletion 3T3-L1 TEAD

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Mouse Deletion 3T3-L1 Usp2

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Mouse Deletion 3T3-L1 MmP13

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Mouse Deletion 3T3-L1 ATP7A

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms