Site Directed Mutagenesis (SDM) Human Deletion HEK 293T

- Found 6758 results

Get tips on using pSpCas9(BB)-2A-Puro (PX459) V2.0 to perform CRISPR Mouse - Deletion 3T3-L1 fmnl 2/3

Products Addgene pSpCas9(BB)-2A-Puro (PX459) V2.0

Stem cells have the unique ability to self-renew or differentiate themselves into various cell types in response to appropriate signals. These cells are especially important for tissue repair, regeneration, replacement, or in the case of hematopoietic stem cells (HSCs) to differentiate into various myeloid populations. Appropriate signals refer to the growth factor supplements or cytokines that mediate differentiation of various stem cells into the required differentiated form. For instance, HSCs can be differentiated into dendritic cells (with IL-4 and GM-CSF), macrophages (with m-CSF) and MDSCs (with IL-6 and GM-CSF). Human pluripotent stem cells (hPSCs) and induced pluripotent stem cells (iPSCs) can be first cultured in neural differentiation media (GSK3š›ƒ-i, TGFš›ƒ-i, AMPK-i, hLIF) to form neural rosettes, which can be differentiated into neural or glial progenitors (finally differentiated into oligodendrocytes). Neural progenitors can be finally differentiated into glutaminergic (dibytyryl cAMP, ascorbic acid) and dopaminergic (SHH, FGF-8, BDNF, GDNF, TGF-š›ƒ3) neurons. Thus, it is important to first identify the self-renewing cell line: its source and its final differentiation state, followed by the supplements and cytokines required for the differentiation, and final use. Timelines are another thing that is considered. For instance, it takes 7-10 days to form neural rosettes from iPSCs and 3 days to differentiate neural progenitors to neurons. Finally, the stability for stem cell culture media varies. It is advised to make fresh media every time when differentiating HSCs to myeloid populations, whereas neural differentiation media may remain stable for two weeks when stored in dark between 2-8C.

Cell culture media Stem cell Differentiation media Differentiation of Human iPSC into Human Neuroepithelial cells

Get tips on using GeneArtā„¢ CRISPR Nuclease Vector with CD4 Enrichment Kit to perform CRISPR Mouse - Deletion NIH 3T3 G3BP

Products Thermo Fisher Scientific GeneArtā„¢ CRISPR Nuclease Vector with CD4 Enrichment Kit

Get tips on using GeneArtā„¢ CRISPR Nuclease Vector with CD4 Enrichment Kit to perform CRISPR Mouse - Deletion NIH 3T3 FXR

Products Thermo Fisher Scientific GeneArtā„¢ CRISPR Nuclease Vector with CD4 Enrichment Kit

Get tips on using ON-TARGETplus Human CYP3A4 (1576) siRNA - SMARTpool to perform siRNA / miRNA gene silencing Human - Primary Human Hepatocytes CYP3A4

Products Horizon Discovery Ltd. ON-TARGETplus Human CYP3A4 (1576) siRNA - SMARTpool

Get tips on using ON-TARGETplus Human CYP2B6 (1555) siRNA - SMARTpool to perform siRNA / miRNA gene silencing Human - Primary Human Hepatocytes CYP2B6

Products Horizon Discovery Ltd. ON-TARGETplus Human CYP2B6 (1555) siRNA - SMARTpool

Gene silencing through the use of small interfering RNA (siRNA) has become a primary tool for identifying disease-causing genes. There are several aspects for preparing and delivering effective siRNA to knockdown a target gene. The length of siRNA should be 21ā€“23nt long with G/C content 30ā€“50%. If a validated siRNA sequence for your target gene is not available, use siRNA generated against the entire target gene ORF. Always work with two or three different siRNA constructs to get reliable results. If you are not sure how much siRNA to use for a given experiment, start with a transfection concentration of 10-50 nM and use siRNA-specific transfection reagent to ensure efficient siRNA delivery in a wide range of cells.

RNA siRNA / miRNA gene silencing Human PC3 (human prostate cancer cell line) STEAP2

Get tips on using siGENOME Human MINK1 siRNA to perform siRNA / miRNA gene silencing Human - RMS MINK

Products Horizon Discovery Ltd. siGENOME Human MINK1 siRNA

Get tips on using siGENOME Human MAP4K2 siRNA to perform siRNA / miRNA gene silencing Human - RMS MAP4K2

Products Horizon Discovery Ltd. siGENOME Human MAP4K2 siRNA

Get tips on using ApopTag Fluorescein in Situ Apoptosis Detection Kit to perform TUNEL assay cell type - HEK293 human embryonic kidney cells

Products Millipore ApopTag Fluorescein in Situ Apoptosis Detection Kit

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms