miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time consuming, but provide a more permanent expression of RNAi in the cells, and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines. When using oligos, the ideal concentration lies between 10-50nM for effective transfection.
miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time consuming, but provide a more permanent expression of RNAi in the cells, and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines. When using oligos, the ideal concentration lies between 10-50nM for effective transfection.
Get tips on using siGENOME Human CHUK (1147) siRNA - SMARTpool to perform siRNA / miRNA gene silencing Human - PANC-1 IKKα/CHUK
Get tips on using siGENOME Human IKBKB (3551) siRNA - SMARTpool to perform siRNA / miRNA gene silencing Human - PANC-1 IKKβ/IKBKB
Get tips on using siGENOME Human GSK3A (2931) siRNA - SMARTpool to perform siRNA / miRNA gene silencing Human - PANC-1 GSK-3α
Get tips on using ON-TARGETplus Human MCL1 (4170) siRNA - SMARTpool to perform siRNA / miRNA gene silencing Human - M245 MCL-1
Get tips on using ON-TARGETplus Human MOAP1 (64112) siRNA - SMARTpool to perform siRNA / miRNA gene silencing Human - A2780 MOAP-1
Get tips on using ON-TARGETplus Human ABCG2 (9429) siRNA - SMARTpool to perform siRNA / miRNA gene silencing Human - BC-1 BCRP
Get tips on using ON-TARGETplus Human RRM2 (6241) siRNA - SMARTpool to perform siRNA / miRNA gene silencing Human - BCBL-1 RRM2
Get tips on using ON-TARGETplus Human SLC7A11 (23657) siRNA - SMARTpool to perform siRNA / miRNA gene silencing Human - BCBL-1 xCT
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment