shRNA gene silencing Human Islets of langerhans SOX6

- Found 5946 results

Get tips on using Wizard® Genomic DNA Purification Kit to perform DNA isolation / purification Cells - Primary cells Mouse embryonic fibroblast (MEF)

Products Promega Wizard® Genomic DNA Purification Kit

Get tips on using TaKaRa MiniBEST Universal Genomic DNA Extraction Kit to perform DNA isolation / purification Cells - Immortalized cell lines SH-SY5Y

Products Takara Bio Inc TaKaRa MiniBEST Universal Genomic DNA Extraction Kit

Get tips on using TaKaRa MiniBEST Universal Genomic DNA Extraction Kit to perform DNA isolation / purification Cells - Immortalized cell lines HEK 293T

Products Takara Bio Inc TaKaRa MiniBEST Universal Genomic DNA Extraction Kit

Get tips on using GenLadder 100 bp + 1.5 kbp (ready-to-use), DNA marker to perform DNA Ladder 100 bp

Products Genaxxon bioscience GenLadder 100 bp + 1.5 kbp (ready-to-use), DNA marker

Get tips on using Gentra Puregene Cell Kit Plus (6.7 x 109) to perform DNA isolation / purification Cells - Immortalized cell lines H1 hESc

Products Qiagen Gentra Puregene Cell Kit Plus (6.7 x 109)

RNA quantification for appropriate concentration and quality (260/280 ratio) is an important step before downstream analysis (including sequencing, RT-qPCR, etc.). Having insufficient RNA quantities or a high salt or phenol in the RNA product can lead to variable or irreproducible downstream results. The various methods used for RNA quantification include: 1. UV spectrophotometric (challenges include: low sensitivity, cannot distinguish between nucleic acid species), 2. Fluorescence-based (challenges include: requires standards, cannot measure amplifiability, not sequence-specific), and 3. RT-PCR (challenges include: requires standards, time-intensive, costly). In order to overcome these challenges, and also to ensure the proper quantification and quality control for RNA product, it is important to use at least two or more methods in order to discard any inconsistencies. Using standards for calibrations increases the sensitivity range for RNA detention (fluorescence- and RT-PCR-based methods). When using RT- PCR, it is important to choose correct primers, aligning to the desired site on the template and of appropriate product length, along with positive, negative and loading controls. It is also important to have at least two primer pairs in order to confirm results.

RNA RNA quantification qPCR

RNA quantification for appropriate concentration and quality (260/280 ratio) is an important step before downstream analysis (including sequencing, RT-qPCR, etc.). Having insufficient RNA quantities or a high salt or phenol in the RNA product can lead to variable or irreproducible downstream results. The various methods used for RNA quantification include: 1. UV spectrophotometric (challenges include: low sensitivity, cannot distinguish between nucleic acid species), 2. Fluorescence-based (challenges include: requires standards, cannot measure amplifiability, not sequence-specific), and 3. RT-PCR (challenges include: requires standards, time-intensive, costly). In order to overcome these challenges, and also to ensure the proper quantification and quality control for RNA product, it is important to use at least two or more methods in order to discard any inconsistencies. Using standards for calibrations increases the sensitivity range for RNA detention (fluorescence- and RT-PCR-based methods). When using RT- PCR, it is important to choose correct primers, aligning to the desired site on the template and of appropriate product length, along with positive, negative and loading controls. It is also important to have at least two primer pairs in order to confirm results.

RNA RNA quantification Coloremetric

RNA quantification for appropriate concentration and quality (260/280 ratio) is an important step before downstream analysis (including sequencing, RT-qPCR, etc.). Having insufficient RNA quantities or a high salt or phenol in the RNA product can lead to variable or irreproducible downstream results. The various methods used for RNA quantification include: 1. UV spectrophotometric (challenges include: low sensitivity, cannot distinguish between nucleic acid species), 2. Fluorescence-based (challenges include: requires standards, cannot measure amplifiability, not sequence-specific), and 3. RT-PCR (challenges include: requires standards, time-intensive, costly). In order to overcome these challenges, and also to ensure the proper quantification and quality control for RNA product, it is important to use at least two or more methods in order to discard any inconsistencies. Using standards for calibrations increases the sensitivity range for RNA detention (fluorescence- and RT-PCR-based methods). When using RT- PCR, it is important to choose correct primers, aligning to the desired site on the template and of appropriate product length, along with positive, negative and loading controls. It is also important to have at least two primer pairs in order to confirm results.

RNA RNA quantification Fuorimetric

Get tips on using siRNA Transfection Reagent to perform siRNA / RNAi /miRNA transfection Rat - IEC Cationic lipid based

Products Santa Cruz Biotechnology siRNA Transfection Reagent

Get tips on using siRNA Transfection Reagent to perform siRNA / RNAi /miRNA transfection Rat - IEC-6 Cationic lipid based

Products Santa Cruz Biotechnology siRNA Transfection Reagent

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms