siRNA / miRNA gene silencing Human Primary Human Aortic Endothelial Cells

- Found 8744 results

Get tips on using TransIT®-LT1 Transfection Reagent to perform DNA transfection Mammalian cells - Immortalized cell lines SKOV-3

Products Mirus TransIT®-LT1 Transfection Reagent

Get tips on using FuGENE® HD Transfection Reagent to perform DNA transfection Mammalian cells - Immortalized cell lines OVCAR-3

Products Promega FuGENE® HD Transfection Reagent

Get tips on using Lipofectamine® 2000 Transfection Reagent to perform DNA transfection Mammalian cells - Immortalized cell lines MCF-7

Products Thermo Fisher Scientific Lipofectamine® 2000 Transfection Reagent

Get tips on using FuGENE® HD Transfection Reagent to perform DNA transfection Mammalian cells - Immortalized cell lines MCF-7

Products Promega FuGENE® HD Transfection Reagent

Get tips on using Lipofectamine® 2000 Transfection Reagent to perform DNA transfection Mammalian cells - Immortalized cell lines PANC-1

Products Thermo Fisher Scientific Lipofectamine® 2000 Transfection Reagent

Get tips on using QIAamp DNA Blood Mini Kit to perform DNA isolation / purification Cells - Immortalized cell lines HEK 293T

Products Qiagen QIAamp DNA Blood Mini Kit

Get tips on using DeadEnd™ Colorimetric TUNEL System to perform TUNEL assay cell type - Islets of langerhans (Beta cells)

Products Promega DeadEnd™ Colorimetric TUNEL System

Microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray RNA amplification & Labeling Rhesus monkey brain tissue Biotin

Microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray RNA amplification & Labeling Mouse brain tissue Biotin

Microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray RNA amplification & Labeling Mouse cochlaea Biotin

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms