Immunohistochemistry Anti-Glial Fibrillary Acidic Protein (GFAP) Mouse Human

- Found 7428 results

Protein isolation is a technique that involves isolation and/ or purification of protein from cells or tissues via chromatography or electrophoresis. The major challenges in protein isolation include: 1. The concentration of proteins in cells is variable and tends to be small for some intracellular proteins. Unlike nucleic acids, proteins cannot be amplified. 2. Proteins are more unstable than nucleic acids. They are easily denatured under suboptimal temperature, pH or salt concentrations. 3. Finally, no generalized technique/protocol can be applied for protein isolation. Proteins may have different electrostatic (number of positively or negatively charged amino acids) or hydrophobic properties. Therefore, protein purification requires multiple steps depending on their charge (a negatively charged resin/column for positively charged proteins and vice-versa), dissolution (using detergents) and unlike in the case of DNA and RNA, instead of using salts, proteins should be isolated by isoelectric precipitation.

Proteins Protein isolation Tissue Human placental tissue

Get tips on using PE anti-human CD135 (Flt-3/Flk-2) Antibody to perform Flow cytometry Anti-bodies Human - CD135

Products BioLegend PE anti-human CD135 (Flt-3/Flk-2) Antibody

Get tips on using Purified Mouse Anti-p62 Ick ligand Clone 3/P62 LCK LIGAND (RUO) to perform Autophagy assay cell type - THP 1

Products BD Biosciences Purified Mouse Anti-p62 Ick ligand Clone 3/P62 LCK LIGAND (RUO)

Get tips on using Purified Mouse Anti-p62 Ick ligand Clone 3/P62 LCK LIGAND (RUO) to perform Autophagy assay cell type - SH-SY5Y

Products BD Biosciences Purified Mouse Anti-p62 Ick ligand Clone 3/P62 LCK LIGAND (RUO)

Get tips on using Brilliant Violet 510™ anti-human HLA-DR Antibody to perform Flow cytometry Anti-bodies Human - HLA-DR

Products BioLegend Brilliant Violet 510™ anti-human HLA-DR Antibody

Get tips on using PE/Dazzle™ 594 anti-human CD184 (CXCR4) Antibody to perform Flow cytometry Anti-bodies Human - CD184/CXCR4

Products BioLegend PE/Dazzle™ 594 anti-human CD184 (CXCR4) Antibody

Get tips on using Recombinant Anti-SOX9 antibody [EPR14335] (ab185230) to perform Immunohistochemistry Rat - Sox9

Products Abcam Recombinant Anti-SOX9 antibody [EPR14335] (ab185230)

Get tips on using Recombinant Anti-PRMT5 antibody [EPR5772] (ab109451) to perform Immunohistochemistry Rat - PRMT5

Products Abcam Recombinant Anti-PRMT5 antibody [EPR5772] (ab109451)

Protein isolation is a technique that involves isolation and/ or purification of protein from cells or tissues via chromatography or electrophoresis. The major challenges in protein isolation include: 1. The concentration of proteins in cells is variable and tends to be small for some intracellular proteins. Unlike nucleic acids, proteins cannot be amplified. 2. Proteins are more unstable than nucleic acids. They are easily denatured under suboptimal temperature, pH or salt concentrations. 3. Finally, no generalized technique/protocol can be applied for protein isolation. Proteins may have different electrostatic (number of positively or negatively charged amino acids) or hydrophobic properties. Therefore, protein purification requires multiple steps depending on their charge (a negatively charged resin/column for positively charged proteins and vice-versa), dissolution (using detergents) and unlike in the case of DNA and RNA, instead of using salts, proteins should be isolated by isoelectric precipitation.

Proteins Protein isolation Mammalian cells Human CD14+ cells

Protein isolation is a technique that involves isolation and/ or purification of protein from cells or tissues via chromatography or electrophoresis. The major challenges in protein isolation include: 1. The concentration of proteins in cells is variable and tends to be small for some intracellular proteins. Unlike nucleic acids, proteins cannot be amplified. 2. Proteins are more unstable than nucleic acids. They are easily denatured under suboptimal temperature, pH or salt concentrations. 3. Finally, no generalized technique/protocol can be applied for protein isolation. Proteins may have different electrostatic (number of positively or negatively charged amino acids) or hydrophobic properties. Therefore, protein purification requires multiple steps depending on their charge (a negatively charged resin/column for positively charged proteins and vice-versa), dissolution (using detergents) and unlike in the case of DNA and RNA, instead of using salts, proteins should be isolated by isoelectric precipitation.

Proteins Protein isolation Tissue Human aortic endothelial cells

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms