siRNA / miRNA gene silencing Mouse Pancreatic Acinar cells

- Found 8620 results

Get tips on using siGENOME Rat Nrp1 siRNA to perform siRNA / miRNA gene silencing Rat - Schwann cells Nrp1

Products Dharmacon siGENOME Rat Nrp1 siRNA

RNA siRNA / RNAi /miRNA transfection Mouse Primary cortical and hippocampal cell

The RNA interference (RNAi) is used to inhibit gene expression or translation, by neutralizing targeted mRNA molecules. Two types of RNA molecules such as microRNA (miRNA) and small interfering RNA (siRNA) play a central role in RNAi. Few points have to considered to increase the transfection efficiency of siRNA. Always use healthy, actively dividing cells to maximize transfection efficiency. The confluency of cells should be between 50-70%. Always use the most appropriate siRNA concentration to avoid off-target effects and unwanted toxic side effects. Positive and negative controls should be used for each and every experiment to determine transfection efficiency.

RNA siRNA / RNAi /miRNA transfection Human Cells A549 & LTEP-a-2 Lipofectamine

Cell culture media 3D Cell Culture Media Human pancreatic cancer organoids

ROS has a very short half-lives in biological environment as they are influenced by exposure to ambient oxygen. As it is highly reactive and hard to measure care should be taken to ensure the stability of the sample during isolation, preparation, storage, and analysis.

Cellular assays ROS assay cell type MiaPaCa-2 pancreatic carcinoma

Get tips on using Pre-designed and validated siRNA against gene IGFBP1 to perform siRNA / miRNA gene silencing Human - Primary Endometrial Stromal Cells IGFBP1 (Insuline-like growth factor binding protein-1)

Products Thermo Fisher Scientific Pre-designed and validated siRNA against gene IGFBP1

Get tips on using ON-TARGETplus Rat Fyn siRNA to perform siRNA / miRNA gene silencing Rat - Schwann cells Fyn

Products Dharmacon ON-TARGETplus Rat Fyn siRNA

Get tips on using Brn-3b siRNA (m) to perform siRNA / miRNA gene silencing Rat - Retinal stem cells Brn-3b

Products Santa Cruz Biotechnology Brn-3b siRNA (m)

Short hairpin or small hairpin RNA (shRNA) is artificial RNA, which has a hairpin loop structure, and uses inherent microRNA (miRNA) machinery to silence target gene expression. This is called RNA interference (RNAi). These can be delivered via plasmids or viral/bacterial vectors. Challenges in shRNA-mediated gene silencing include 1. Off-target silencing, 2. Packaging shRNA encoding lentivirus, and 3. Stable transduction in cells. RNAi has been designed to have anywhere from 19-27 bs, but the most effective design has 19 bp. In case commercial shRNAs are not available, potential target sites can be chosen within exon, 5’- or 3’ UTR, depending on which splice variants of the gene are desired. One should use the latest algorithms and choose at least two different sequences, targeting different regions, in order to have confidence in overcoming off-target effects. A BLAST search after selecting potential design will eliminate potential off-target sequences. For the second challenge, sequencing the vector using primers for either strand (50-100 bp upstream) is suggested, along with using enzymatic digestion on agarose gel for the vector. Next, once the shRNA-containing vector is packaged in a virus, it is important to check the viral titer before transduction. Finally, using a marker in the lentiviral vector (fluorescent protein or antibiotic resistance), along with qPCR for target gene expression can help in determining the efficacy of transduction and shRNA on its target site.

RNA shRNA gene silencing Human Neuroblastoma cells (SH-SY5Y) Beclin 1

Get tips on using mirVana® miRNA mimic to perform siRNA / miRNA gene silencing Human - Primary Endometrial Stromal Cells hsa-miR-542-3p

Products Thermo Fisher Scientific mirVana® miRNA mimic

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms