Cell Culture Contamination Detection Kit

- Found 8489 results

Get tips on using FlashTag™ Biotin HSR RNA Labeling Kits to perform Microarray RNA amplification & Labeling - Mouse skin tissue Biotin

Products Thermo Fisher Scientific FlashTag™ Biotin HSR RNA Labeling Kits

Get tips on using FlashTag™ Biotin HSR RNA Labeling Kits to perform Microarray RNA amplification & Labeling - Mouse mammary tissue Biotin

Products Thermo Fisher Scientific FlashTag™ Biotin HSR RNA Labeling Kits

Get tips on using miRCURY LNA™ microRNA Power Labeling Kits to perform Microarray RNA amplification & Labeling - HUVEC Hy3 and Hy5

Products Exiqon miRCURY LNA™ microRNA Power Labeling Kits

Get tips on using miRCURY LNA™ microRNA Power Labeling Kits to perform Microarray RNA amplification & Labeling - LNCaP Hy3 and Hy5

Products Exiqon miRCURY LNA™ microRNA Power Labeling Kits

Get tips on using FlashTag™ Biotin HSR RNA Labeling Kits to perform Microarray RNA amplification & Labeling - Rat saphenous arteries Biotin

Products Thermo Fisher Scientific FlashTag™ Biotin HSR RNA Labeling Kits

Get tips on using miRCURY LNA™ microRNA Power Labeling Kits to perform Microarray RNA amplification & Labeling - Rat spinal cord Hy5

Products Exiqon miRCURY LNA™ microRNA Power Labeling Kits

Get tips on using Low Input Quick Amp Labeling Kits to perform Microarray RNA amplification & Labeling - Fish fundulus heteroclitus Cyanine-3 / Cyanine-5

Products Agilent Technologies Low Input Quick Amp Labeling Kits

miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time consuming, but provide a more permanent expression of RNAi in the cells, and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines. When using oligos, the ideal concentration lies between 10-50nM for effective transfection.

RNA siRNA / miRNA gene silencing Human LNCap STEAP1

miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time consuming, but provide a more permanent expression of RNAi in the cells, and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines. When using oligos, the ideal concentration lies between 10-50nM for effective transfection.

RNA siRNA / miRNA gene silencing Human LNCap FGD4

miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time consuming, but provide a more permanent expression of RNAi in the cells, and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines. When using oligos, the ideal concentration lies between 10-50nM for effective transfection.

RNA siRNA / miRNA gene silencing Human LNCap MDK

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms