A PCR reaction consists of the template DNA, two primers covering the amplification site, an enzyme, and buffers. However, non-specific product amplification and primer-dimer formation during set-up are major causes of PCR failure. Nevertheless, high-quality DNA polymerase and optimize reaction buffers will certainly lead to a successful PCR reaction.
A PCR reaction consists of the template DNA, two primers covering the amplification site, an enzyme, and buffers. However, non-specific product amplification and primer-dimer formation during set-up are major causes of PCR failure. Nevertheless, high-quality hot-start DNA polymerase and optimize reaction buffers will certainly lead to a successful PCR reaction
Reporter gene assays enable high sensitivity measurement of gene expression and cell signaling through the addition of bioluminescent genes into target cells. One of the major challenges is to make a specific construct that no responses other than those related to the signaling pathway of interest. This can be achieved by selecting a highly specific reporter constructs containing only defined responsive elements and a minimal promoter linked to reporter enzyme such as luciferase.
A PCR reaction consists of the template DNA, two primers covering the amplification site, an enzyme, and buffers. A quantitative, real-time PCR reaction typically includes all of that plus a probe that can be detected fluorescently as the reaction runs, with no gel required. for detection. However, non-specific product amplification and primer-dimer formation during set-up are major causes of PCR failure. Nevertheless, high-quality DNA polymerase and optimize reaction buffers will certainly lead to a successful PCR reaction.
A PCR reaction consists of the template DNA, two primers covering the amplification site, an enzyme, and buffers. A quantitative, real-time PCR reaction typically includes all of that plus a probe that can be detected fluorescently as the reaction runs, with no gel required. for detection. However, non-specific product amplification and primer-dimer formation during set-up are major causes of PCR failure. Nevertheless, high-quality DNA polymerase and optimize reaction buffers will certainly lead to a successful PCR reaction.
A PCR reaction consists of the template DNA, two primers covering the amplification site, an enzyme, and buffers. The resulting amplicons are generally detected by gel electrophoresis and for some further applications like cloning, sequencing, amplicon product needs to be recovered from the gel and subsequently purified. However, non-specific product amplification and primer-dimer formation during set-up make gel extraction difficult. Nevertheless, high-quality DNA polymerase and optimize reaction buffers will certainly lead to a successful PCR reaction.
A PCR reaction consists of the template DNA, two primers covering the amplification site, an enzyme, and buffers. The resulting amplicons are generally detected by gel electrophoresis and for some further applications like cloning, sequencing, amplicon product needs to be recovered from the gel and subsequently purified. However, non-specific product amplification and primer-dimer formation during set-up make gel extraction difficult. Nevertheless, high-quality DNA polymerase and optimize reaction buffers will certainly lead to a successful PCR reaction.
A PCR reaction consists of the template DNA, two primers covering the amplification site, an enzyme, and buffers. A quantitative, real-time PCR reaction typically includes all of that plus a probe that can be detected fluorescently as the reaction runs, with no gel required. for detection. However, non-specific product amplification and primer-dimer formation during set-up are major causes of PCR failure. Nevertheless, high-quality DNA polymerase and optimize reaction buffers will certainly lead to a successful PCR reaction.
A PCR reaction consists of the template DNA, two primers covering the amplification site, an enzyme, and buffers. A quantitative, real-time PCR reaction typically includes all of that plus a probe that can be detected fluorescently as the reaction runs, with no gel required. for detection. However, non-specific product amplification and primer-dimer formation during set-up are major causes of PCR failure. Nevertheless, high-quality DNA polymerase and optimize reaction buffers will certainly lead to a successful PCR reaction.
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment