Select a Cell type


PCR Methylation specific PCR

- Found 11505 results

In ChIP, the most vital step is the binding of an antibody and choosing the right antibody. The binding affinity of different types of immunoglobulins to protein A or G differs significantly. Henceforth, it is recommended to choose either protein A or protein G coated beads. If you do not see any product in the positive control, add 5–10 μg of chromatin and 1–5 μg of antibody to each IP reaction and incubate with antibody overnight and an additional 2 hr after adding Protein G/A beads. If no product is observed in the experimental sample, add more DNA to the PCR reaction or increase the number of amplification cycles. Furthermore, if you have any problem with antibodies, make sure to use the ChIP-validated antibody.

Proteins ChIP Anti-bodies RPA

In ChIP, the most vital step is the binding of an antibody and choosing the right antibody. The binding affinity of different types of immunoglobulins to protein A or G differs significantly. Henceforth, it is recommended to choose either protein A or protein G coated beads. If you do not see any product in the positive control, add 5–10 μg of chromatin and 1–5 μg of antibody to each IP reaction and incubate with antibody overnight and an additional 2 hr after adding Protein G/A beads. If no product is observed in the experimental sample, add more DNA to the PCR reaction or increase the number of amplification cycles. Furthermore, if you have any problem with antibodies, make sure to use the ChIP-validated antibody.

Proteins ChIP Anti-bodies RUNX1

Western blotting is a widely used technique to size separate proteins from a pool of cell or tissue lysates. The technique has 4 major steps: a) gel electrophoresis, b) blocking and treatment with antigen specific antibody, c) treatment with secondary antibody and finally d) detection and visualization. Though western blotting is a widely used technique, detection of specific proteins depends on several factors, the major ones are antibody concentration, incubation time and washing steps. Key points for obtaining clean blots are: always prepare fresh buffer solutions and optimize antibody concentration. Given the advent of high-throughput protein analysis and a push to limit the use of lab consumables, onestep antibodies are developed which recognise protein of interest and also contain a detection label.

Proteins Western blotting PCNA

Hello everyone! I am currently using different DNA isolation kits to extract DNA from insects. Even though I am able to successfully extract DNA I would like to maximize the yield. Do you have any tips that might help me with that even if the kits are not specifically designed for insect samples?

Discussions What DNA isolation kit would work for insect samples?

Western blotting is a widely used technique to size separate proteins from a pool of cell or tissue lysates. The technique has 4 major steps: a) gel electrophoresis, b) blocking and treatment with antigen specific antibody, c) treatment with secondary antibody and finally d) detection and visualization. Though western blotting is a widely used technique, detection of specific proteins depends on several factors, the major ones are antibody concentration, incubation time and washing steps. Key points for obtaining clean blots are: always prepare fresh buffer solutions and optimize antibody concentration. Given the advent of high-throughput protein analysis and a push to limit the use of lab consumables, onestep antibodies are developed which recognise protein of interest and also contain a detection label.

Proteins Western blotting PARP

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Mouse Deletion B16-F1 PC7

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Rat Deletion PC12 myosin IIA (Myh9)

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Rat Deletion PC12 Munc18

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Rat Deletion PC12 MMP9

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Human Repression PCSK9

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms