Microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.
Microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.
Get tips on using Genomic DNA MiniSpin: Bacteria to perform DNA isolation / purification Bacteria - Gram positive Pseudomonas
Transfection is a powerful technique that enables the study of the function of genes and gene products in cells. Based on the nature of experiments, we may need a stable DNA transfection in cells for persistent gain-of-function or loss-of-function of the target gene. For stable transfection, integration of a DNA vector into the chromosome is crucial which requires selective screening and clonal isolation. By carefully selecting a viral delivery system and related reagents we can ensure safe and highly-efficient delivery of expression constructs for high-level constitutive or inducible expression in any mammalian cell type.
Transfection is a powerful technique that enables the study of the function of genes and gene products in cells. Based on the nature of experiments, we may need a stable DNA transfection in cells for persistent gain-of-function or loss-of-function of the target gene. For stable transfection, integration of a DNA vector into the chromosome is crucial which requires selective screening and clonal isolation. By carefully selecting a viral delivery system and related reagents we can ensure safe and highly-efficient delivery of expression constructs for high-level constitutive or inducible expression in any mammalian cell type.
Get tips on using Genomic DNA Purification Kit to perform DNA isolation / purification Bacteria - Gram negative Salmonella enterica
Get tips on using Genomic DNA Purification Kit to perform DNA isolation / purification Bacteria - Gram positive Staphylococcus aureus
Get tips on using Alexa Fluor® 488 Annexin V/Dead Cell Apoptosis Kit to perform Necrosis HeLa
Get tips on using Agilent DNA 1000 Kit Bioanalyzer DNA Analysis Part Number:5067-1504 to perform Cell line authentication Human lung carcinoma cell line NCI-H1299
Get tips on using TIANamp Genomic DNA Kit to perform DNA isolation / purification Cells - Immortalized cell lines HEK 293T
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment