siRNA / miRNA gene silencing Human Melanoma cells (501 Mel and SK Mel 28)

- Found 9925 results

Get tips on using SignalSilence® PTEN siRNA to perform siRNA / miRNA gene silencing Human - A2780 PTEN

Products Cell Signaling Technology SignalSilence® PTEN siRNA

Get tips on using ON-TARGETplus Human LIN28A (79727) siRNA - SMARTpool to perform siRNA / miRNA gene silencing Human - hES cell line H1 (WA01) LIN28

Products Horizon Discovery Ltd. ON-TARGETplus Human LIN28A (79727) siRNA - SMARTpool

Get tips on using MEK-1 siRNA (h) to perform siRNA / miRNA gene silencing Human - WI-38 MEK1

Products Santa Cruz Biotechnology MEK-1 siRNA (h)

ROS has a very short half-lives in biological environment as they are influenced by exposure to ambient oxygen. As it is highly reactive and hard to measure care should be taken to ensure the stability of the sample during isolation, preparation, storage, and analysis.

Cellular assays ROS assay cell type PLHC-1, SK-HEP-1, Hep3b, HepG2 human hepatocellular carcinoma

RNAi or RNA interference is a common method to suppress gene expression in vitro/in vivo by utilizing the inherent microRNA machinery, without introducing a total gene knockout. miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid-mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time-consuming, but provide a more permanent expression of RNAi in the cells and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines.

RNA siRNA / RNAi /miRNA transfection Rat IEC-6 Cationic lipid based

Get tips on using ON-TARGETplus Human ITGB3 (3690) siRNA - SMARTpool to perform siRNA / miRNA gene silencing Human - MDA-MB-231 β3 integrin/ITGB3

Products Horizon Discovery Ltd. ON-TARGETplus Human ITGB3 (3690) siRNA - SMARTpool

Get tips on using ON-TARGETplus Human ITGB1 (3688) siRNA - SMARTpool to perform siRNA / miRNA gene silencing Human - MDA-MB-231 β1 integrin/ITGB1

Products Horizon Discovery Ltd. ON-TARGETplus Human ITGB1 (3688) siRNA - SMARTpool

Get tips on using RNeasy Plus Mini Kit to perform RNA isolation / purification Cells - immortalized Ma-Mel

Products Qiagen RNeasy Plus Mini Kit

A key signature for necrotic cells is the permeabilization of the plasma membrane. Necrosis can be quantified by several cellular and biochemical assays. When studied minutely, it reveals the difficulty in confirmation in secondary induction of necrosis in apoptotic cells. Apoptotic cells are being analyzed to shift to necrotic status owing to membrane permeability at later stages, and thus, discrimination of two cell death becomes critical. Therefore, it is crucial to use a necrosis detection kit or a defined procedure to analyze this unprogrammed form of death in response to immense chemical and physical insults.

Cellular assays Necrosis SK-BR-3

Short hairpin or small hairpin RNA (shRNA) is artificial RNA, which has a hairpin loop structure, and uses inherent microRNA (miRNA) machinery to silence target gene expression. This is called RNA interference (RNAi). These can be delivered via plasmids or viral/bacterial vectors. Challenges in shRNA-mediated gene silencing include: 1. Off-target silencing, 2. Packaging shRNA encoding lentivirus, and 3. Stable transduction in cells. RNAi have been designed to have anywhere from 19-27 bs, but the most effective design has 19 bp. In case commercial shRNAs are not available, potential target sites can be chosen within exon, 5’- or 3’ UTR, depending on which splice variants of the gene are desired. One should use the latest algorithms and choose at least two different sequences, targeting different regions, in order to have confidence in overcoming off-target effects. A BLAST search after selecting potential design will eliminate potential off-target sequences. For the second challenge, sequencing the vector using primers for either strand (50-100 bp upstream) is suggested, along with using enzymatic digestion on agarose gel for the vector. Next, once the shRNA-containing vector is packaged in a virus, it is important to check the viral titer before transduction. Finally, using a marker in the lentiviral vector (fluorescent protein or antibiotic resistance), along with qPCR for target gene expression can help in determining efficacy of transduction and shRNA on its target site.

RNA shRNA gene silencing Human Islets of langerhans Negative control (scrambled) lentiviral particles

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms