siRNA / miRNA gene silencing Human Primary Endometrial Stromal Cells hsa-miR-542-3p

- Found 9336 results

Get tips on using Silencer® Select_SPRY2 siRNA to perform siRNA / miRNA gene silencing Human - RMS SPRY2

Products Thermo Fisher Scientific Silencer® Select_SPRY2 siRNA

Get tips on using CREB-1 siRNA (h) to perform siRNA / miRNA gene silencing Human - HUVEC CREB

Products Santa Cruz Biotechnology CREB-1 siRNA (h)

Get tips on using MEK-1 siRNA (h) to perform siRNA / miRNA gene silencing Human - NHLF MEK1

Products Santa Cruz Biotechnology MEK-1 siRNA (h)

Get tips on using ERK 1 siRNA (h) to perform siRNA / miRNA gene silencing Human - NHLF ERK1

Products Santa Cruz Biotechnology ERK 1 siRNA (h)

Get tips on using Flotillin-1 siRNA (h) to perform siRNA / miRNA gene silencing Human - A2780 FLOT1

Products Santa Cruz Biotechnology Flotillin-1 siRNA (h)

Get tips on using Dlx-2 siRNA (h) to perform siRNA / miRNA gene silencing Human - A549 DLX2

Products Santa Cruz Biotechnology Dlx-2 siRNA (h)

Get tips on using SnoA/N siRNA (h) to perform siRNA / miRNA gene silencing Human - SW1990 SnoN

Products Santa Cruz Biotechnology SnoA/N siRNA (h)

Short hairpin or small hairpin RNA (shRNA) is artificial RNA, which has a hairpin loop structure, and uses inherent microRNA (miRNA) machinery to silence target gene expression. This is called RNA interference (RNAi). These can be delivered via plasmids or viral/bacterial vectors. Challenges in shRNA-mediated gene silencing include: 1. Off-target silencing, 2. Packaging shRNA encoding lentivirus, and 3. Stable transduction in cells. RNAi have been designed to have anywhere from 19-27 bs, but the most effective design has 19 bp. In case commercial shRNAs are not available, potential target sites can be chosen within exon, 5’- or 3’ UTR, depending on which splice variants of the gene are desired. One should use the latest algorithms and choose at least two different sequences, targeting different regions, in order to have confidence in overcoming off-target effects. A BLAST search after selecting potential design will eliminate potential off-target sequences. For the second challenge, sequencing the vector using primers for either strand (50-100 bp upstream) is suggested, along with using enzymatic digestion on agarose gel for the vector. Next, once the shRNA-containing vector is packaged in a virus, it is important to check the viral titer before transduction. Finally, using a marker in the lentiviral vector (fluorescent protein or antibiotic resistance), along with qPCR for target gene expression can help in determining efficacy of transduction and shRNA on its target site.

RNA shRNA gene silencing Human HEK 293T CAPN5- (Calpains) cationic lipid based

The RNA interference (RNAi) is used to inhibit gene expression or translation, by neutralizing targeted mRNA molecules. Two types of RNA molecules such as microRNA (miRNA) and small interfering RNA (siRNA) play a central role in RNAi. Few points have to considered to increase the transfection efficiency of siRNA. Always use healthy, actively dividing cells to maximize transfection efficiency. The confluency of cells should be between 50-70%. Always use the most appropriate siRNA concentration to avoid off-target effects and unwanted toxic side effects. Positive and negative controls should be used for each and every experiment to determine transfection efficiency.

RNA siRNA / RNAi /miRNA transfection Mouse Glomerular Mesangial cells polymer / lipid

Get tips on using AllStars Hs Cell Death siRNA to perform siRNA / miRNA gene silencing Human - U2OS KRAS

Products Qiagen AllStars Hs Cell Death siRNA

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms