Western blot 1,4 β-N-acetyl-D-glucosamine Triticum vulgaris Bacteria

- Found 7055 results

Get tips on using Recombinant Anti-beta Catenin antibody [E247] - ChIP Grade (ab32572) to perform Immunohistochemistry Mouse - β-Catenin

Products Abcam Recombinant Anti-beta Catenin antibody [E247] - ChIP Grade (ab32572)

Get tips on using TRIzol™ Max™ Bacterial RNA Isolation Kit to perform RNA isolation / purification Bacteria - Gram negative Vibro parahaemolyticus

Products Thermo Fisher Scientific TRIzol™ Max™ Bacterial RNA Isolation Kit

Get tips on using GenElute™ Bacterial Genomic DNA Kit to perform DNA isolation / purification Bacteria - Gram positive Actinomycytes

Products Sigma-Aldrich GenElute™ Bacterial Genomic DNA Kit

Protein expression refers to the techniques in which a protein of interest is synthesized, modified or regulated in cells. The blueprints for proteins are stored in DNA which is then transcribed to produce messenger RNA (mRNA). mRNA is then translated into protein. In prokaryotes, this process of mRNA translation occurs simultaneously with mRNA transcription. In eukaryotes, these two processes occur at separate times and in separate cellular regions (transcription in nucleus and translation in the cytoplasm). Recombinant protein expression utilizes cellular machinery to generate proteins, instead of chemical synthesis of proteins as it is very complex. Proteins produced from such DNA templates are called recombinant proteins and DNA templates are simple to construct. Recombinant protein expression involves transfecting cells with a DNA vector that contains the template. The cultured cells can then transcribe and translate the desired protein. The cells can be lysed to extract the expressed protein for subsequent purification. Both prokaryotic and eukaryotic protein expression systems are widely used. The selection of the system depends on the type of protein, the requirements for functional activity and the desired yield. These expression systems include mammalian, insect, yeast, bacterial, algal and cell-free. Each of these has pros and cons. Mammalian expression systems can be used for transient or stable expression, with ultra high-yield protein expression. However, high yields are only possible in suspension cultures and more demanding culture conditions. Insect cultures are the same as mammalian, except that they can be used as both static and suspension cultures. These cultures also have demanding culture conditions and may also be time-consuming. Yeast cultures can produce eukaryotic proteins and are scalable, with minimum culture requirements. Yeast cultures may require growth culture optimization. Bacterial cultures are simple, scalable and low cost, but these may require protein-specific optimization and are not suitable for all mammalian proteins. Algal cultures are optimized for robust selection and expression, but these are less developed than other host platforms. Cell-free systems are open, free of any unnatural compounds, fast and simple. This system is, however, not optimal for scaling up.

Proteins Protein Expression Prokaryotic cells E. coli rabbit voltage-dependent calcium channel β2a subunit

Get tips on using Qproteome Bacterial Protein Prep Kit to perform Protein isolation Bacteria - Salmonella paratyphi A

Products Qiagen Qproteome Bacterial Protein Prep Kit

Protein expression refers to the techniques in which a protein of interest is synthesized, modified or regulated in cells. The blueprints for proteins are stored in DNA which is then transcribed to produce messenger RNA (mRNA). mRNA is then translated into protein. In prokaryotes, this process of mRNA translation occurs simultaneously with mRNA transcription. In eukaryotes, these two processes occur at separate times and in separate cellular regions (transcription in nucleus and translation in the cytoplasm). Recombinant protein expression utilizes cellular machinery to generate proteins, instead of chemical synthesis of proteins as it is very complex. Proteins produced from such DNA templates are called recombinant proteins and DNA templates are simple to construct. Recombinant protein expression involves transfecting cells with a DNA vector that contains the template. The cultured cells can then transcribe and translate the desired protein. The cells can be lysed to extract the expressed protein for subsequent purification. Both prokaryotic and eukaryotic protein expression systems are widely used. The selection of the system depends on the type of protein, the requirements for functional activity and the desired yield. These expression systems include mammalian, insect, yeast, bacterial, algal and cell-free. Each of these has pros and cons. Mammalian expression systems can be used for transient or stable expression, with ultra high-yield protein expression. However, high yields are only possible in suspension cultures and more demanding culture conditions. Insect cultures are the same as mammalian, except that they can be used as both static and suspension cultures. These cultures also have demanding culture conditions and may also be time-consuming. Yeast cultures can produce eukaryotic proteins and are scalable, with minimum culture requirements. Yeast cultures may require growth culture optimization. Bacterial cultures are simple, scalable and low cost, but these may require protein-specific optimization and are not suitable for all mammalian proteins. Algal cultures are optimized for robust selection and expression, but these are less developed than other host platforms. Cell-free systems are open, free of any unnatural compounds, fast and simple. This system is, however, not optimal for scaling up.

Proteins Protein Expression Prokaryotic cells E. coli E. granulosus β4 tubulin

Get tips on using Senescence Detection Kit - Merck to perform Reporter gene assay β-galactosidase substrates - MCF-7 human breast cancer

Products Merck Millipore Senescence Detection Kit - Merck

Get tips on using ON-TARGETplus Mouse Nr1h2 (22260) siRNA - SMARTpool to perform siRNA / miRNA gene silencing Mouse - M210B4 LXR‐β/Nr1h2

Products Horizon Discovery Ltd. ON-TARGETplus Mouse Nr1h2 (22260) siRNA - SMARTpool

Get tips on using Beta-Galactosidase Staining Kit to perform Reporter gene assay β-galactosidase substrates - INS-1 832/13

Products Takara Bio Inc Beta-Galactosidase Staining Kit

Get tips on using Senescence Cells Histochemical Staining Kit to perform Reporter gene assay β-galactosidase substrates - mouse embryonic fibroblasts

Products Sigma-Aldrich Senescence Cells Histochemical Staining Kit

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms