Get tips on using QIAamp DNA Mini Kit to perform DNA isolation / purification Yeast - Candida albicans
Get tips on using Bioanalyzer High Sensitivity DNA Analysis to perform DNA Damage Assay A2780
Get tips on using Bioanalyzer High Sensitivity DNA Analysis to perform DNA Damage Assay HT1080
Get tips on using Apoptotic DNA Ladder Isolation Kit to perform DNA Damage Assay U266
Short hairpin or small hairpin RNA (shRNA) is artificial RNA, which has a hairpin loop structure, and uses inherent microRNA (miRNA) machinery to silence target gene expression. This is called RNA interference (RNAi). These can be delivered via plasmids or viral/bacterial vectors. Challenges in shRNA-mediated gene silencing include: 1. Off-target silencing, 2. Packaging shRNA encoding lentivirus, and 3. Stable transduction in cells. RNAi have been designed to have anywhere from 19-27 bs, but the most effective design has 19 bp. In case commercial shRNAs are not available, potential target sites can be chosen within exon, 5’- or 3’ UTR, depending on which splice variants of the gene are desired. One should use the latest algorithms and choose at least two different sequences, targeting different regions, in order to have confidence in overcoming off-target effects. A BLAST search after selecting potential design will eliminate potential off-target sequences. For the second challenge, sequencing the vector using primers for either strand (50-100 bp upstream) is suggested, along with using enzymatic digestion on agarose gel for the vector. Next, once the shRNA-containing vector is packaged in a virus, it is important to check the viral titer before transduction. Finally, using a marker in the lentiviral vector (fluorescent protein or antibiotic resistance), along with qPCR for target gene expression can help in determining efficacy of transduction and shRNA on its target site.
Get tips on using β-Gal Reporter Gene Assay, chemiluminescent to perform Reporter gene assay β-galactosidase substrates - mouse mesenchymal stem cells
Get tips on using Wizard® Genomic DNA Purification Kit to perform DNA isolation / purification Cells - Primary cells Mouse embryonic fibroblast (MEF)
Get tips on using QIAamp DNA Mini Kit to perform DNA isolation / purification Bacteria - Gram negative Enterobacteriaceae
Get tips on using PowerSoil® DNA isolation to perform DNA isolation / purification Bacteria - Gram positive Lactobacillus
miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time consuming, but provide a more permanent expression of RNAi in the cells, and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines. When using oligos, the ideal concentration lies between 10-50nM for effective transfection.
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment