Get tips on using N-WASP siRNA (h) to perform siRNA / miRNA gene silencing Human - T47-D N-WASP
Get tips on using VEGF-D siRNA (h) to perform siRNA / miRNA gene silencing Human - Caki-2 VEGF-D
Get tips on using IL-8 siRNA (h) to perform siRNA / miRNA gene silencing Human - HUVEC IL-8 Lipid
Get tips on using Hs_TET3_2 FlexiTube siRNA to perform siRNA / miRNA gene silencing Human - HCT-116 TET3(TET methylcytosine dioxygenase 3)
Flow cytometry is an immunophenotyping technique whereby sing cell suspensions are stained for either cell surface markers or intracellular proteins by fluorescently-labelled antibodies and analyzed with a flow cytometer, where fluorescently-labelled molecules are excited by the laser to emit light at varying wavelengths, which is then detected by the instrument. There are several key criteria which are required to be kept in mind while designing a flow experiment- 1. Antibody titration (optimal dilution of antibodies should be calculated in order to avoid over- or under- saturated signals for proper detection of surface and intracellular markers), 2. Precision (3 or more replicates of the sample should be used per experiment), 3. Specificity (proper isotype controls should be included in the experiment), 4. Day-to-day variability (experiments should be repeated 3 or more times to ensure consistency and avoid variability due to flow cytometer settings), 5. Antibody interaction (Fluorescence minus one or FMO should be used, which is the comparison of signals from panel minus one antibody vs. the full panel), and 6. Antibody stability (fluorescently-labelled antibodies should be stored at 4C).
Flow cytometry is an immunophenotyping technique whereby sing cell suspensions are stained for either cell surface markers or intracellular proteins by fluorescently-labelled antibodies and analyzed with a flow cytometer, where fluorescently-labelled molecules are excited by the laser to emit light at varying wavelengths, which is then detected by the instrument. There are several key criteria which are required to be kept in mind while designing a flow experiment- 1. Antibody titration (optimal dilution of antibodies should be calculated in order to avoid over- or under- saturated signals for proper detection of surface and intracellular markers), 2. Precision (3 or more replicates of the sample should be used per experiment), 3. Specificity (proper isotype controls should be included in the experiment), 4. Day-to-day variability (experiments should be repeated 3 or more times to ensure consistency and avoid variability due to flow cytometer settings), 5. Antibody interaction (Fluorescence minus one or FMO should be used, which is the comparison of signals from panel minus one antibody vs. the full panel), and 6. Antibody stability (fluorescently-labelled antibodies should be stored at 4C).
Get tips on using 14-3-3ζ siRNA(h) to perform siRNA / miRNA gene silencing Human - Caco-2 14‐3‐3ζ
Get tips on using Cxcr4 siRNA to perform siRNA / miRNA gene silencing Mouse - Embryonic stem cells CXCR4
ROS has a very short half-lives in biological environment as they are influenced by exposure to ambient oxygen. As it is highly reactive and hard to measure care should be taken to ensure the stability of the sample during isolation, preparation, storage, and analysis.
Get tips on using Silencer select_ObR siRNA to perform siRNA / miRNA gene silencing Human - MCF-7 ObR(leptin receptor/LEPR)
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment