siRNA / miRNA gene silencing Human BC-1

- Found 6300 results

Reporter gene assays enable high sensitivity measurement of gene expression and cell signaling through the addition of bioluminescent genes into target cells. One of the major challenges is to make a specific construct that has no responses other than those related to the signaling pathway of interest. This can be achieved by selecting highly specific reporter constructs containing only defined responsive elements and a minimal promoter linked to reporter enzymes such as luciferase

Cellular assays Reporter gene assay β-galactosidase substrates Aspc-1

Hello, can someone here help me? I am trying to silence e-selectin and ICAM-1 in endothelial cells. I would like to know if this is possible using shRNA

Discussions Multiple gene silencing using ShRNA

Get tips on using FlexiTube GeneSolution GS27279 for Tnfrsf12a to perform siRNA / miRNA gene silencing Mouse - B16-BL6 FN14/Tnfrsf12a

Products Qiagen FlexiTube GeneSolution GS27279 for Tnfrsf12a

Reporter gene assays are designed to test the regulation of the expression of a gene of interest. This is usually done by linking the promoter of the gene of interest with a gene such as a firefly luciferase, which can be easily detected by addition of luciferin that leads to an enzymatic reaction to produce luminescence. The enzymatic reaction can be correlated to the expression of the gene of interest. Another luciferase gene that can be used is Renilla luciferase. For an appropriate luciferase assay: 1. the reporter should express uniformly in all cells, 2. specifically respond to effectors that the assay intends to monitor, 3. have low intrinsic stability to quickly reflect transcriptional dynamics. It is important to have an equal number of cells plated in each testing condition to avoid any incorrect readouts. Reporter assays could be single or dual reporter assays. The reporter could be both luciferases. Most dual-luciferase assays involve adding two reagents to each sample and measuring luminescence following each addition. Adding the first reagent activates the first luciferase reporter reaction; adding the second reagent extinguishes first luciferase reporter activity and initiates the second luciferase reaction. Dual-luciferase assays have some advantages, including 1. reduces variability, 2. reduces background, 3. normalizes differences in transfection efficiencies between samples.

Cellular assays Reporter gene assay β-galactosidase substrates SK-Hep-1

Get tips on using Human NRG1-beta 1/HRG1-beta 1 DuoSet ELISA to perform ELISA Human - NRG1

Products R&D Systems Human NRG1-beta 1/HRG1-beta 1 DuoSet ELISA

Get tips on using Human Dkk-1 ELISA to perform ELISA Human - Dkk-1

Products Raybiotech Human Dkk-1 ELISA

Get tips on using SurePrint Human miRNA Microarrays to perform Microarray Human - Endometrial stromal cells miRNA-expression array (labelled)

Products Agilent Technologies SurePrint Human miRNA Microarrays

Reporter gene assays enable high sensitivity measurement of gene expression and cell signaling through the addition of bioluminescent genes into target cells. One of the major challenges is to make a specific construct that has no responses other than those related to the signaling pathway of interest. This can be achieved by selecting highly specific reporter constructs containing only defined responsive elements and a minimal promoter linked to reporter enzymes such as luciferase

Cellular assays Reporter gene assay β-galactosidase substrates INS-1 832/13

Get tips on using 3D-Gene® Mouse miRNA Oligo chip (ver.21) to perform Microarray Gene expression arrays - Mouse liver tissue Cyanine-3-CTP

Products Toray 3D-Gene® Mouse miRNA Oligo chip (ver.21)

Get tips on using MISSION® esiRNA_esiRNA targeting mouse Lrp5 (esiRNA1) to perform siRNA / miRNA gene silencing Mouse - MLO‐Y4 Lrp5

Products Sigma-Aldrich MISSION® esiRNA_esiRNA targeting mouse Lrp5 (esiRNA1)

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms