shRNA gene silencing Human SiHa

- Found 4877 results

Get tips on using GeneChip® Human Genome U133 Plus 2.0 Array to perform Microarray Gene expression arrays - Rhesus monkey brain tissue Biotin

Products Thermo Fisher Scientific GeneChip® Human Genome U133 Plus 2.0 Array

Reporter gene assays enable high sensitivity measurement of gene expression and cell signaling through the addition of bioluminescent genes into target cells. One of the major challenges is to make a specific construct that has no responses other than those related to the signaling pathway of interest. This can be achieved by selecting highly specific reporter constructs containing only defined responsive elements and a minimal promoter linked to reporter enzymes such as luciferase

Cellular assays Reporter gene assay luciferase BHK-21 baby hamster kidney cells

Reporter gene assays enable high sensitivity measurement of gene expression and cell signaling through the addition of bioluminescent genes into target cells. One of the major challenges is to make a specific construct that has no responses other than those related to the signaling pathway of interest. This can be achieved by selecting highly specific reporter constructs containing only defined responsive elements and a minimal promoter linked to reporter enzymes such as luciferase

Cellular assays Reporter gene assay β-galactosidase substrates HeLa cervical cancer cells

Reporter gene assays enable high sensitivity measurement of gene expression and cell signaling through the addition of bioluminescent genes into target cells. One of the major challenges is to make a specific construct that no responses other than those related to the signaling pathway of interest. This can be achieved by selecting a highly specific reporter constructs containing only defined responsive elements and a minimal promoter linked to reporter enzyme such as luciferase.

Cellular assays Reporter gene assay β-galactosidase substrates mouse mesenchymal stem cells

Reporter gene assays enable high sensitivity measurement of gene expression and cell signaling through the addition of bioluminescent genes into target cells. One of the major challenges is to make a specific construct that has no responses other than those related to the signaling pathway of interest. This can be achieved by selecting highly specific reporter constructs containing only defined responsive elements and a minimal promoter linked to reporter enzymes such as luciferase

Cellular assays Reporter gene assay β-galactosidase substrates mouse pancreatic stellate cells

Reporter gene assays enable high sensitivity measurement of gene expression and cell signaling through the addition of bioluminescent genes into target cells. One of the major challenges is to make a specific construct that has no responses other than those related to the signaling pathway of interest. This can be achieved by selecting highly specific reporter constructs containing only defined responsive elements and a minimal promoter linked to reporter enzymes such as luciferase

Cellular assays Reporter gene assay β-galactosidase substrates INS-1 832/13

Get tips on using Silencer® Select Negative Control No 1 siRNA to perform siRNA / miRNA gene silencing Mouse - siRNA negative control polymer / lipid

Products Thermo Fisher Scientific Silencer® Select Negative Control No 1 siRNA

Get tips on using SignalSilence® NF-κB p65 siRNA I #6261 to perform siRNA / miRNA gene silencing Rat - H9c2 NF-κB RelA (p65)

Products Cell Signaling Technology SignalSilence® NF-κB p65 siRNA I #6261

DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray Gene expression arrays Rat mesothelium Satin cocktail

DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray Gene expression arrays Mouse dorsal skin Biotin

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms