siRNA / miRNA gene silencing Human SUIT-2

- Found 6057 results

Get tips on using Rat BMP-2 PicoKine™ ELISA Kit to perform ELISA Rat - BMP-2

Products BosterBio Rat BMP-2 PicoKine™ ELISA Kit
Ne Caco-2 Experiment

Cellular assays Ne Caco-2

Get tips on using MAP LC3β Antibody (G-2) to perform Autophagy assay cell type - AR42J

Products Santa Cruz Biotechnology MAP LC3β Antibody (G-2)

A key signature for necrotic cells is the permeabilization of the plasma membrane. Necrosis can be quantified by several cellular and biochemical assays. When studied minutely, it reveals the difficulty in confirmation in secondary induction of necrosis in apoptotic cells. Apoptotic cells are being analyzed to shift to necrotic status owing to membrane permeability at later stages, and thus, discrimination of two cell death becomes critical. Therefore, it is crucial to use a necrosis detection kit or a defined procedure to analyze this unprogrammed form of death in response to immense chemical and physical insults.

Cellular assays Necrosis MIA PaCa-2

RNA-Seq is a method to sequence RNA by applying Next Generation Sequencing (NGS). The quality of RNA is critical for the success of RNA-Seq. The integrity of RNA is measured by the RNA integrity number (RIN). RIN is computed from RNA electrophoresis and electropherogram profiles (the peak area of the 28S rRNA should be approximately twice the peak area of the 18S rRNA). If you get the RIN value lower than 7, the possibility of getting the low quality of RNA-seq data is high. To get a high quality RNA, it is better to work with fresh samples or snap-freeze the tissues in liquid nitrogen as quickly as possible and store them at -80°C until further use. Make sure designated areas and all your filter tips, microfuge tubes, plastic, and glassware are RNase-free.

RNA RNA sequencing Mouse BV-2

Protein expression refers to the techniques in which a protein of interest is synthesized, modified or regulated in cells. The blueprints for proteins are stored in DNA which is then transcribed to produce messenger RNA (mRNA). mRNA is then translated into protein. In prokaryotes, this process of mRNA translation occurs simultaneously with mRNA transcription. In eukaryotes, these two processes occur at separate times and in separate cellular regions (transcription in nucleus and translation in the cytoplasm). Recombinant protein expression utilizes cellular machinery to generate proteins, instead of chemical synthesis of proteins as it is very complex. Proteins produced from such DNA templates are called recombinant proteins and DNA templates are simple to construct. Recombinant protein expression involves transfecting cells with a DNA vector that contains the template. The cultured cells can then transcribe and translate the desired protein. The cells can be lysed to extract the expressed protein for subsequent purification. Both prokaryotic and eukaryotic protein expression systems are widely used. The selection of the system depends on the type of protein, the requirements for functional activity and the desired yield. These expression systems include mammalian, insect, yeast, bacterial, algal and cell-free. Each of these has pros and cons. Mammalian expression systems can be used for transient or stable expression, with ultra high-yield protein expression. However, high yields are only possible in suspension cultures and more demanding culture conditions. Insect cultures are the same as mammalian, except that they can be used as both static and suspension cultures. These cultures also have demanding culture conditions and may also be time-consuming. Yeast cultures can produce eukaryotic proteins and are scalable, with minimum culture requirements. Yeast cultures may require growth culture optimization. Bacterial cultures are simple, scalable and low cost, but these may require protein-specific optimization and are not suitable for all mammalian proteins. Algal cultures are optimized for robust selection and expression, but these are less developed than other host platforms. Cell-free systems are open, free of any unnatural compounds, fast and simple. This system is, however, not optimal for scaling up.

Proteins Protein Expression Eukaryotic cells HEK293 hβ-defensin 2/3

Get tips on using BLOOD AGAR BASE NO.2 to perform Bacterial cell culture media Helicobacter pylori

Products Thermo Fisher Scientific BLOOD AGAR BASE NO.2

Get tips on using Human BMP2 ELISA Kit (ab119581) to perform ELISA Human - BMP-2

Products Abcam Human BMP2 ELISA Kit (ab119581)

DNA damage assay is a standard method for determining in-vivo/in-vitro genotoxicity by measuring the breaks in the DNA chain of animal and plant cells. Initial DNA damage leads to cell cycle arrest and, at the final stages, leads to induction of senescence or cell death (apoptosis, necrosis, autophagy, or mitotic catastrophe). Detection of DNA damage from mild to moderate to severe is challenging when studying genotoxicity in the pool of cells. It is favorable to use DNA damage assay kits available for prominent identification of the extent of damage in the analysis.

Cellular assays DNA Damage Assay Saos-2

DNA damage assay is a standard method for determining in-vivo/in-vitro genotoxicity by measuring the breaks in the DNA chain of animal and plant cells. Initial DNA damage leads to cell cycle arrest and, at the final stages, leads to induction of senescence or cell death (apoptosis, necrosis, autophagy, or mitotic catastrophe). Detection of DNA damage from mild to moderate to severe is challenging when studying genotoxicity in the pool of cells. It is favorable to use DNA damage assay kits available for prominent identification of the extent of damage in the analysis.

Cellular assays DNA Damage Assay Caco-2

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms