Protein Expression

- Found 2612 results

DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray Comperative genomic hybridization Human MDA-MB-361

DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray Comperative genomic hybridization Human SKBR3

DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray Comperative genomic hybridization Human BT474

Get tips on using Qproteome FFPE Tissue Kit (20) to perform Protein isolation Tissue - Human tissue C-MFPE samples

Products Qiagen Qproteome FFPE Tissue Kit (20)

Get tips on using IEF Marker 3-10, Liquid Mix to perform Protein Ladder IEF and 2-D Standards

Products SERVA Electrophoresis IEF Marker 3-10, Liquid Mix

Get tips on using CelLytic™ MT Cell Lysis Reagent to perform Protein isolation Tissue - Human umbilical cord tissue

Products Sigma-Aldrich CelLytic™ MT Cell Lysis Reagent

Get tips on using CelLytic™ MT Cell Lysis Reagent to perform Protein isolation Tissue - Rabbit eye retina/choroids

Products Sigma-Aldrich CelLytic™ MT Cell Lysis Reagent

Get tips on using CelLytic™ MT Cell Lysis Reagent to perform Protein isolation Tissue - Human aortic endothelial cells

Products Sigma-Aldrich CelLytic™ MT Cell Lysis Reagent

Get tips on using CelLytic™ MT Cell Lysis Reagent to perform Protein isolation Mammalian cells - Human CD14+ cells

Products Sigma-Aldrich CelLytic™ MT Cell Lysis Reagent

Get tips on using Pierce™ Coomassie Plus (Bradford) Assay Reagent to perform Protein quantification Mammalian cells - OUMS-27

Products Thermo Fisher Scientific Pierce™ Coomassie Plus (Bradford) Assay Reagent

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms