Site Directed Mutagenesis (SDM) Human Point mutation IMR-32

- Found 6882 results

Get tips on using Dynabeads™ Untouched™ Human T Cells Kit to perform Cell Isolation Human T cells

Products Thermo Fisher Scientific Dynabeads™ Untouched™ Human T Cells Kit

Get tips on using Human TGF Beta 1 PicoKine™ ELISA Kit to perform ELISA Human - TGF-beta 1

Products BosterBio Human TGF Beta 1 PicoKine™ ELISA Kit

Get tips on using Human IL-1 Beta PicoKine™ ELISA Kit to perform ELISA Human - IL-1 beta

Products BosterBio Human IL-1 Beta PicoKine™ ELISA Kit

Get tips on using Human Total ER alpha/NR3A1 DuoSet IC ELISA to perform ELISA Human - Estrogen receptor (ESRs)

Products R&D Systems Human Total ER alpha/NR3A1 DuoSet IC ELISA

Protein isolation is a technique that involves isolation and/ or purification of protein from cells or tissues via chromatography or electrophoresis. The major challenges in protein isolation include: 1. The concentration of proteins in cells is variable and tends to be small for some intracellular proteins. Unlike nucleic acids, proteins cannot be amplified. 2. Proteins are more unstable than nucleic acids. They are easily denatured under suboptimal temperature, pH or salt concentrations. 3. Finally, no generalized technique/protocol can be applied for protein isolation. Proteins may have different electrostatic (number of positively or negatively charged amino acids) or hydrophobic properties. Therefore, protein purification requires multiple steps depending on their charge (a negatively charged resin/column for positively charged proteins and vice-versa), dissolution (using detergents) and unlike in the case of DNA and RNA, instead of using salts, proteins should be isolated by isoelectric precipitation.

Proteins Protein isolation Mammalian cells Human aortic endothelial cells

Protein isolation is a technique that involves isolation and/ or purification of protein from cells or tissues via chromatography or electrophoresis. The major challenges in protein isolation include: 1. The concentration of proteins in cells is variable and tends to be small for some intracellular proteins. Unlike nucleic acids, proteins cannot be amplified. 2. Proteins are more unstable than nucleic acids. They are easily denatured under suboptimal temperature, pH or salt concentrations. 3. Finally, no generalized technique/protocol can be applied for protein isolation. Proteins may have different electrostatic (number of positively or negatively charged amino acids) or hydrophobic properties. Therefore, protein purification requires multiple steps depending on their charge (a negatively charged resin/column for positively charged proteins and vice-versa), dissolution (using detergents) and unlike in the case of DNA and RNA, instead of using salts, proteins should be isolated by isoelectric precipitation.

Proteins Protein isolation Mammalian cells Human gingival epithelial cells

Get tips on using MagCellect Human B Cell Isolation Kit to perform Cell Isolation B cell

Products R&D Systems MagCellect Human B Cell Isolation Kit

Get tips on using B Cell Isolation Kit II, human to perform Cell Isolation B cell

Products Miltenyibiotec B Cell Isolation Kit II, human

Get tips on using MACSprep™ PBMC Isolation Kit, human to perform Cell Isolation PBMC Isolation

Products Miltenyibiotec MACSprep™ PBMC Isolation Kit, human

Get tips on using Human/Mouse Active Caspase-3 Antibody to perform Western blotting Caspase-3

Products R&D Systems Human/Mouse Active Caspase-3 Antibody

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms